Cargando…
Lightweight 3D Dense Autoencoder Network for Hyperspectral Remote Sensing Image Classification
The lack of labeled training samples restricts the improvement of Hyperspectral Remote Sensing Image (HRSI) classification accuracy based on deep learning methods. In order to improve the HRSI classification accuracy when there are few training samples, a Lightweight 3D Dense Autoencoder Network (L3...
Autores principales: | Bai, Yang, Sun, Xiyan, Ji, Yuanfa, Fu, Wentao, Duan, Xiaoyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610785/ https://www.ncbi.nlm.nih.gov/pubmed/37896728 http://dx.doi.org/10.3390/s23208635 |
Ejemplares similares
-
CAEVT: Convolutional Autoencoder Meets Lightweight Vision Transformer for Hyperspectral Image Classification
por: Zhang, Zhiwen, et al.
Publicado: (2022) -
SpectralMAE: Spectral Masked Autoencoder for Hyperspectral Remote Sensing Image Reconstruction
por: Zhu, Lingxuan, et al.
Publicado: (2023) -
Hyperspectral Remote Sensing Image Classification Based on Maximum Overlap Pooling Convolutional Neural Network
por: Li, Chenming, et al.
Publicado: (2018) -
Spectral-spatial classification of hyperspectral remote sensing images
por: Benediktsson, Jon Atli, et al.
Publicado: (2015) -
ISBDD Model for Classification of Hyperspectral Remote Sensing Imagery
por: Li, Na, et al.
Publicado: (2018)