Cargando…

A Novel Electrophoretic Technique to Improve Metasurface Sensing of Low Concentration Particles in Solution

A novel electrophoretic technique to improve metasurface sensing capabilities of charged particles in solution is presented. The proposed technique may improve the ability of metasurfaces to sense charged particles in solution in a manner not possible using the current standard of particle depositio...

Descripción completa

Detalles Bibliográficos
Autores principales: Kurland, Zachary A., Goyette, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610787/
https://www.ncbi.nlm.nih.gov/pubmed/37896454
http://dx.doi.org/10.3390/s23208359
Descripción
Sumario:A novel electrophoretic technique to improve metasurface sensing capabilities of charged particles in solution is presented. The proposed technique may improve the ability of metasurfaces to sense charged particles in solution in a manner not possible using the current standard of particle deposition (which allows particles to sediment randomly on a metasurface under evaporation) by inducing an external, nonuniform electric field through the metasurface apertures. Such a technique may be useful in various sensing applications, such as in biological, polymer, or environmental sciences, where low concentration particles in solution are of interest. The electrophoretic technique was simulated and experimentally tested using latex nanoparticles in solution. The results suggest that, using this technique, one may theoretically increase the particle density within the metasurface regions of greatest sensitivity by nearly 1900% in comparison to random sedimentation due to evaporation. Such an increase in particle density within the regions of greatest sensitivity may facilitate more precise material property measurements and enhance identification and detection capabilities of metasurfaces to particles in solution which constitute only a few hundred parts per million by mass. It was experimentally determined that the electrophoretic technique enhanced metasurface sensing capabilities of 333 parts per million by mass latex nanoparticle solutions by nearly 1700%.