Cargando…
A Convolutional Neural Network with Spatial Location Integration for Nearshore Water Depth Inversion
Nearshore water depth plays a crucial role in scientific research, navigation management, coastal zone protection, and coastal disaster mitigation. This study aims to address the challenge of insufficient feature extraction from remote sensing data in nearshore water depth inversion. To achieve this...
Autores principales: | He, Chunlong, Jiang, Qigang, Tao, Guofang, Zhang, Zhenchao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610799/ https://www.ncbi.nlm.nih.gov/pubmed/37896586 http://dx.doi.org/10.3390/s23208493 |
Ejemplares similares
-
Depth in convolutional neural networks solves scene segmentation
por: Seijdel, Noor, et al.
Publicado: (2020) -
Convolutional neural network for earthquake detection and location
por: Perol, Thibaut, et al.
Publicado: (2018) -
Multi-resolution convolutional neural networks for inverse problems
por: Wang, Feng, et al.
Publicado: (2020) -
The Face Inversion Effect in Deep Convolutional Neural Networks
por: Tian, Fang, et al.
Publicado: (2022) -
Hyperparameter Optimization of a Convolutional Neural Network Model for Pipe Burst Location in Water Distribution Networks
por: Antunes, André, et al.
Publicado: (2023)