Cargando…
A Fine-Grained Semantic Alignment Method Specific to Aggregate Multi-Scale Information for Cross-Modal Remote Sensing Image Retrieval
Due to the swift growth in the scale of remote sensing imagery, scholars have progressively directed their attention towards achieving efficient and adaptable cross-modal retrieval for remote sensing images. They have also steadily tackled the distinctive challenge posed by the multi-scale attribute...
Autores principales: | Zheng, Fuzhong, Wang, Xu, Wang, Luyao, Zhang, Xiong, Zhu, Hongze, Wang, Long, Zhang, Haisu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610807/ https://www.ncbi.nlm.nih.gov/pubmed/37896530 http://dx.doi.org/10.3390/s23208437 |
Ejemplares similares
-
Semantics-Reconstructing Hashing for Cross-Modal Retrieval
por: Zhang, Peng-Fei, et al.
Publicado: (2020) -
Semantic Retrieval of Remote Sensing Images Based on the Bag-of-Words Association Mapping Method
por: Li, Jingwen, et al.
Publicado: (2023) -
Deep Semantic-Preserving Reconstruction Hashing for Unsupervised Cross-Modal Retrieval
por: Cheng, Shuli, et al.
Publicado: (2020) -
Hierarchical semantic interaction-based deep hashing network for cross-modal retrieval
por: Chen, Shubai, et al.
Publicado: (2021) -
Gradually focused fine-grained sketch-based image retrieval
por: Zhu, Ming, et al.
Publicado: (2019)