Cargando…

Scanning Electron Microscopy and EDX Spectroscopy of Commercial Swabs Used for COVID-19 Lateral Flow Testing

The chemical composition of COVID test swabs has not been examined beyond the manufacturer’s datasheets. The unprecedented demand for swabs to conduct rapid lateral flow tests and nucleic acid amplification tests led to mass production, including 3D printing platforms. Manufacturing impurities could...

Descripción completa

Detalles Bibliográficos
Autores principales: Aparicio-Alonso, Manuel, Torres-Solórzano, Verónica, Méndez-Contreras, José Francisco, Acevedo-Whitehouse, Karina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610828/
https://www.ncbi.nlm.nih.gov/pubmed/37888657
http://dx.doi.org/10.3390/toxics11100805
Descripción
Sumario:The chemical composition of COVID test swabs has not been examined beyond the manufacturer’s datasheets. The unprecedented demand for swabs to conduct rapid lateral flow tests and nucleic acid amplification tests led to mass production, including 3D printing platforms. Manufacturing impurities could be present in the swabs and, if so, could pose a risk to human health. We used scanning electron microscopy and energy dispersive X-ray (EDX) spectroscopy to examine the ultrastructure of seven assorted brands of COVID test swabs and to identify and quantify their chemical elements. We detected eight unexpected elements, including transition metals, such as titanium and zirconium, the metalloid silicon, as well as post-transition metals aluminium and gallium, and the non-metal elements sulphur and fluorine. Some of the elements were detected as trace amounts, but for others, the amount was close to reported toxicological thresholds for inhalation routes. Experimental studies have shown that the detrimental effects of unexpected chemical elements include moderate to severe inflammatory states in the exposed epithelium as well as proliferative changes. Given the massive testing still being used in the context of the COVID pandemic, we urge caution in continuing to recommend repeated and frequent testing, particularly of healthy, non-symptomatic, individuals.