Cargando…
Fast Trajectory Tracking Control Algorithm for Autonomous Vehicles Based on the Alternating Direction Multiplier Method (ADMM) to the Receding Optimization of Model Predictive Control (MPC)
In order to improve the real-time performance of the trajectory tracking of autonomous vehicles, this paper applies the alternating direction multiplier method (ADMM) to the receding optimization of model predictive control (MPC), which improves the computational speed of the algorithm. Based on the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610838/ https://www.ncbi.nlm.nih.gov/pubmed/37896485 http://dx.doi.org/10.3390/s23208391 |
_version_ | 1785128350878007296 |
---|---|
author | Dong, Ding Ye, Hongtao Luo, Wenguang Wen, Jiayan Huang, Dan |
author_facet | Dong, Ding Ye, Hongtao Luo, Wenguang Wen, Jiayan Huang, Dan |
author_sort | Dong, Ding |
collection | PubMed |
description | In order to improve the real-time performance of the trajectory tracking of autonomous vehicles, this paper applies the alternating direction multiplier method (ADMM) to the receding optimization of model predictive control (MPC), which improves the computational speed of the algorithm. Based on the vehicle dynamics model, the output equation of the autonomous vehicle trajectory tracking control system is constructed, and the auxiliary variable and the dual variable are introduced. The quadratic programming problem transformed from the MPC and the vehicle dynamics constraints are rewritten into the solution of the ADMM form, and a decreasing penalty factor is used during the solution process. The simulation verification is carried out through the joint simulation platform of Simulink and Carsim. The results show that, compared with the active set method (ASM) and the interior point method (IPM), the algorithm proposed in this paper can not only improve the accuracy of trajectory tracking, but also exhibits good real-time performance in different prediction time domains and control time domains. When the prediction time domain increases, the calculation time shows no significant difference. This verifies the effectiveness of the ADMM in improving the real-time performance of MPC. |
format | Online Article Text |
id | pubmed-10610838 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106108382023-10-28 Fast Trajectory Tracking Control Algorithm for Autonomous Vehicles Based on the Alternating Direction Multiplier Method (ADMM) to the Receding Optimization of Model Predictive Control (MPC) Dong, Ding Ye, Hongtao Luo, Wenguang Wen, Jiayan Huang, Dan Sensors (Basel) Article In order to improve the real-time performance of the trajectory tracking of autonomous vehicles, this paper applies the alternating direction multiplier method (ADMM) to the receding optimization of model predictive control (MPC), which improves the computational speed of the algorithm. Based on the vehicle dynamics model, the output equation of the autonomous vehicle trajectory tracking control system is constructed, and the auxiliary variable and the dual variable are introduced. The quadratic programming problem transformed from the MPC and the vehicle dynamics constraints are rewritten into the solution of the ADMM form, and a decreasing penalty factor is used during the solution process. The simulation verification is carried out through the joint simulation platform of Simulink and Carsim. The results show that, compared with the active set method (ASM) and the interior point method (IPM), the algorithm proposed in this paper can not only improve the accuracy of trajectory tracking, but also exhibits good real-time performance in different prediction time domains and control time domains. When the prediction time domain increases, the calculation time shows no significant difference. This verifies the effectiveness of the ADMM in improving the real-time performance of MPC. MDPI 2023-10-11 /pmc/articles/PMC10610838/ /pubmed/37896485 http://dx.doi.org/10.3390/s23208391 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Dong, Ding Ye, Hongtao Luo, Wenguang Wen, Jiayan Huang, Dan Fast Trajectory Tracking Control Algorithm for Autonomous Vehicles Based on the Alternating Direction Multiplier Method (ADMM) to the Receding Optimization of Model Predictive Control (MPC) |
title | Fast Trajectory Tracking Control Algorithm for Autonomous Vehicles Based on the Alternating Direction Multiplier Method (ADMM) to the Receding Optimization of Model Predictive Control (MPC) |
title_full | Fast Trajectory Tracking Control Algorithm for Autonomous Vehicles Based on the Alternating Direction Multiplier Method (ADMM) to the Receding Optimization of Model Predictive Control (MPC) |
title_fullStr | Fast Trajectory Tracking Control Algorithm for Autonomous Vehicles Based on the Alternating Direction Multiplier Method (ADMM) to the Receding Optimization of Model Predictive Control (MPC) |
title_full_unstemmed | Fast Trajectory Tracking Control Algorithm for Autonomous Vehicles Based on the Alternating Direction Multiplier Method (ADMM) to the Receding Optimization of Model Predictive Control (MPC) |
title_short | Fast Trajectory Tracking Control Algorithm for Autonomous Vehicles Based on the Alternating Direction Multiplier Method (ADMM) to the Receding Optimization of Model Predictive Control (MPC) |
title_sort | fast trajectory tracking control algorithm for autonomous vehicles based on the alternating direction multiplier method (admm) to the receding optimization of model predictive control (mpc) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610838/ https://www.ncbi.nlm.nih.gov/pubmed/37896485 http://dx.doi.org/10.3390/s23208391 |
work_keys_str_mv | AT dongding fasttrajectorytrackingcontrolalgorithmforautonomousvehiclesbasedonthealternatingdirectionmultipliermethodadmmtotherecedingoptimizationofmodelpredictivecontrolmpc AT yehongtao fasttrajectorytrackingcontrolalgorithmforautonomousvehiclesbasedonthealternatingdirectionmultipliermethodadmmtotherecedingoptimizationofmodelpredictivecontrolmpc AT luowenguang fasttrajectorytrackingcontrolalgorithmforautonomousvehiclesbasedonthealternatingdirectionmultipliermethodadmmtotherecedingoptimizationofmodelpredictivecontrolmpc AT wenjiayan fasttrajectorytrackingcontrolalgorithmforautonomousvehiclesbasedonthealternatingdirectionmultipliermethodadmmtotherecedingoptimizationofmodelpredictivecontrolmpc AT huangdan fasttrajectorytrackingcontrolalgorithmforautonomousvehiclesbasedonthealternatingdirectionmultipliermethodadmmtotherecedingoptimizationofmodelpredictivecontrolmpc |