Cargando…
Fast Trajectory Tracking Control Algorithm for Autonomous Vehicles Based on the Alternating Direction Multiplier Method (ADMM) to the Receding Optimization of Model Predictive Control (MPC)
In order to improve the real-time performance of the trajectory tracking of autonomous vehicles, this paper applies the alternating direction multiplier method (ADMM) to the receding optimization of model predictive control (MPC), which improves the computational speed of the algorithm. Based on the...
Autores principales: | Dong, Ding, Ye, Hongtao, Luo, Wenguang, Wen, Jiayan, Huang, Dan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610838/ https://www.ncbi.nlm.nih.gov/pubmed/37896485 http://dx.doi.org/10.3390/s23208391 |
Ejemplares similares
-
LQR-MPC-Based Trajectory-Tracking Controller of Autonomous Vehicle Subject to Coupling Effects and Driving State Uncertainties
por: Yuan, Tengfei, et al.
Publicado: (2022) -
Hybrid FSK-PSK Waveform Optimization for Radar Based on Alternating Direction Method of Multiplier (ADMM)
por: Fei, Zhiting, et al.
Publicado: (2021) -
Highly Robust Adaptive Sliding Mode Trajectory Tracking Control of Autonomous Vehicles
por: Xie, Fengxi, et al.
Publicado: (2023) -
A New Trajectory Tracking Algorithm for Autonomous Vehicles Based on Model Predictive Control
por: Huang, Zhejun, et al.
Publicado: (2021) -
Receding horizon control strategy for an electric vehicle with dual-motor coupling system in consideration of stochastic vehicle mass
por: Guo, Hongqiang, et al.
Publicado: (2018)