Cargando…
A Lightweight Recurrent Grouping Attention Network for Video Super-Resolution
Effective aggregation of temporal information of consecutive frames is the core of achieving video super-resolution. Many scholars have utilized structures such as sliding windows and recurrences to gather the spatio-temporal information of frames. However, although the performances of constructed v...
Autores principales: | Zhu, Yonggui, Li, Guofang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610850/ https://www.ncbi.nlm.nih.gov/pubmed/37896667 http://dx.doi.org/10.3390/s23208574 |
Ejemplares similares
-
Lightweight Multi-Scale Asymmetric Attention Network for Image Super-Resolution
por: Zhang, Min, et al.
Publicado: (2021) -
Lightweight Super-Resolution with Self-Calibrated Convolution for Panoramic Videos
por: Shang, Fanjie, et al.
Publicado: (2022) -
S2A: Scale-Attention-Aware Networks for Video Super-Resolution
por: Guo, Taian, et al.
Publicado: (2021) -
Thermal Image Super-Resolution Based on Lightweight Dynamic Attention Network for Infrared Sensors
por: Zhang, Haikun, et al.
Publicado: (2023) -
Accurate and lightweight MRI super-resolution via multi-scale bidirectional fusion attention network
por: Xu, Ling, et al.
Publicado: (2022)