Cargando…
Real-Time Anomaly Detection for Water Quality Sensor Monitoring Based on Multivariate Deep Learning Technique
With the increased use of automated systems, the Internet of Things (IoT), and sensors for real-time water quality monitoring, there is a greater requirement for the timely detection of unexpected values. Technical faults can introduce anomalies, and a large incoming data rate might make the manual...
Autores principales: | El-Shafeiy, Engy, Alsabaan, Maazen, Ibrahem, Mohamed I., Elwahsh, Haitham |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610887/ https://www.ncbi.nlm.nih.gov/pubmed/37896705 http://dx.doi.org/10.3390/s23208613 |
Ejemplares similares
-
A new smart healthcare framework for real-time heart disease detection based on deep and machine learning
por: Elwahsh, Haitham, et al.
Publicado: (2021) -
Enhancing Security in ZigBee Wireless Sensor Networks: A New Approach and Mutual Authentication Scheme for D2D Communication
por: Allakany, Alaa, et al.
Publicado: (2023) -
Lightweight Multi-Class Support Vector Machine-Based Medical Diagnosis System with Privacy Preservation
por: Abdelfattah, Sherif, et al.
Publicado: (2023) -
A Federated Learning Model Based on Hardware Acceleration for the Early Detection of Alzheimer’s Disease
por: Khalil, Kasem, et al.
Publicado: (2023) -
Automated multivariate analysis of multi-sensor data submitted online: Real-time environmental monitoring
por: Eide, Ingvar, et al.
Publicado: (2018)