Cargando…
Fluopicolide-Induced Oxidative Stress and DNA Damage in the Earthworm Eisenia foetida
Fluopicolide is a new benzamide fungicide with a unique mechanism of action and is toxic to some non-target organisms. However, there is a lack of research on the chronic toxicity of fluopicolide to earthworms. In this study, in order to evaluate the chronic toxicity of fluopicolide to earthworms, t...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610927/ https://www.ncbi.nlm.nih.gov/pubmed/37888659 http://dx.doi.org/10.3390/toxics11100808 |
_version_ | 1785128371892518912 |
---|---|
author | Wen, Shengfang Wang, Youwei Wang, Xueting Liu, Chang Xue, Yannan Liu, Chao Wang, Jinhua Xia, Xiaoming |
author_facet | Wen, Shengfang Wang, Youwei Wang, Xueting Liu, Chang Xue, Yannan Liu, Chao Wang, Jinhua Xia, Xiaoming |
author_sort | Wen, Shengfang |
collection | PubMed |
description | Fluopicolide is a new benzamide fungicide with a unique mechanism of action and is toxic to some non-target organisms. However, there is a lack of research on the chronic toxicity of fluopicolide to earthworms. In this study, in order to evaluate the chronic toxicity of fluopicolide to earthworms, the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST), and DNA oxidative damage (8-hyoxy-2-deoxyguanosine content) in earthworms were measured at 7, 14, 21, and 28 days after exposure to different concentrations (0, 0.1, 0.5, 1, 2.5, 5, and 10 mg/kg) of fluopicolide. In most treatment groups, the ROS levels increased significantly 7 days after exposure and then decreased gradually with an increase in exposure time, a certain dose–effect relationship. The antioxidant enzymes’ activities (SOD and CAT) in most treatment groups were activated, showing an increasing trend at first and then a decreasing trend; however, the CAT activity in the high-concentration treatment group was inhibited 21 days after exposure. The GST activity and MDA content showed an increasing trend at first and then a decreasing trend, which was dependent on the dose. As a biomarker of DNA damage, the 8-OHdG content was positively correlated with the concentration of fluopicolide. The results showed that a low dose of fluopicolide could cause oxidative stress and DNA damage in earthworms. |
format | Online Article Text |
id | pubmed-10610927 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106109272023-10-28 Fluopicolide-Induced Oxidative Stress and DNA Damage in the Earthworm Eisenia foetida Wen, Shengfang Wang, Youwei Wang, Xueting Liu, Chang Xue, Yannan Liu, Chao Wang, Jinhua Xia, Xiaoming Toxics Article Fluopicolide is a new benzamide fungicide with a unique mechanism of action and is toxic to some non-target organisms. However, there is a lack of research on the chronic toxicity of fluopicolide to earthworms. In this study, in order to evaluate the chronic toxicity of fluopicolide to earthworms, the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST), and DNA oxidative damage (8-hyoxy-2-deoxyguanosine content) in earthworms were measured at 7, 14, 21, and 28 days after exposure to different concentrations (0, 0.1, 0.5, 1, 2.5, 5, and 10 mg/kg) of fluopicolide. In most treatment groups, the ROS levels increased significantly 7 days after exposure and then decreased gradually with an increase in exposure time, a certain dose–effect relationship. The antioxidant enzymes’ activities (SOD and CAT) in most treatment groups were activated, showing an increasing trend at first and then a decreasing trend; however, the CAT activity in the high-concentration treatment group was inhibited 21 days after exposure. The GST activity and MDA content showed an increasing trend at first and then a decreasing trend, which was dependent on the dose. As a biomarker of DNA damage, the 8-OHdG content was positively correlated with the concentration of fluopicolide. The results showed that a low dose of fluopicolide could cause oxidative stress and DNA damage in earthworms. MDPI 2023-09-25 /pmc/articles/PMC10610927/ /pubmed/37888659 http://dx.doi.org/10.3390/toxics11100808 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wen, Shengfang Wang, Youwei Wang, Xueting Liu, Chang Xue, Yannan Liu, Chao Wang, Jinhua Xia, Xiaoming Fluopicolide-Induced Oxidative Stress and DNA Damage in the Earthworm Eisenia foetida |
title | Fluopicolide-Induced Oxidative Stress and DNA Damage in the Earthworm Eisenia foetida |
title_full | Fluopicolide-Induced Oxidative Stress and DNA Damage in the Earthworm Eisenia foetida |
title_fullStr | Fluopicolide-Induced Oxidative Stress and DNA Damage in the Earthworm Eisenia foetida |
title_full_unstemmed | Fluopicolide-Induced Oxidative Stress and DNA Damage in the Earthworm Eisenia foetida |
title_short | Fluopicolide-Induced Oxidative Stress and DNA Damage in the Earthworm Eisenia foetida |
title_sort | fluopicolide-induced oxidative stress and dna damage in the earthworm eisenia foetida |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610927/ https://www.ncbi.nlm.nih.gov/pubmed/37888659 http://dx.doi.org/10.3390/toxics11100808 |
work_keys_str_mv | AT wenshengfang fluopicolideinducedoxidativestressanddnadamageintheearthwormeiseniafoetida AT wangyouwei fluopicolideinducedoxidativestressanddnadamageintheearthwormeiseniafoetida AT wangxueting fluopicolideinducedoxidativestressanddnadamageintheearthwormeiseniafoetida AT liuchang fluopicolideinducedoxidativestressanddnadamageintheearthwormeiseniafoetida AT xueyannan fluopicolideinducedoxidativestressanddnadamageintheearthwormeiseniafoetida AT liuchao fluopicolideinducedoxidativestressanddnadamageintheearthwormeiseniafoetida AT wangjinhua fluopicolideinducedoxidativestressanddnadamageintheearthwormeiseniafoetida AT xiaxiaoming fluopicolideinducedoxidativestressanddnadamageintheearthwormeiseniafoetida |