Cargando…
Intelligent Hierarchical Admission Control for Low-Earth Orbit Satellites Based on Deep Reinforcement Learning
Low-Earth orbit (LEO) satellites have limited on-board resources, user terminals are unevenly distributed in the constantly changing coverage area, and the service requirements vary significantly. It is urgent to optimize resource allocation under the constraint of limited satellite spectrum resourc...
Autores principales: | Wei, Debin, Guo, Chuanqi, Yang, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611023/ https://www.ncbi.nlm.nih.gov/pubmed/37896563 http://dx.doi.org/10.3390/s23208470 |
Ejemplares similares
-
Satellite mega-constellations create risks in Low Earth Orbit, the atmosphere and on Earth
por: Boley, Aaron C., et al.
Publicado: (2021) -
Generating Low-Earth Orbit Satellite Attitude Maneuver Profiles Using Deep Neural Networks
por: Yun, Seok-Teak
Publicado: (2023) -
BeiDou Augmented Navigation from Low Earth Orbit Satellites
por: Su, Mudan, et al.
Publicado: (2019) -
Intelligent air defense task assignment based on hierarchical reinforcement learning
por: Liu, Jia-yi, et al.
Publicado: (2022) -
Intelligent Control of Groundwater in Slopes with Deep Reinforcement Learning †
por: Biniyaz, Aynaz, et al.
Publicado: (2022)