Cargando…

Electromagnetic Force on an Aluminum Honeycomb Sandwich Panel Moving in a Magnetic Field

This paper reports a method for calculating the electromagnetic force acting on an aluminum honeycomb sandwich panel moving in a magnetic field. This research is motivated by the non-contact electromagnetic detumbling technology for space non-cooperative targets. Past modeling of the electromagnetic...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Yunfeng, Yue, Honghao, Wen, Feiyang, Zhao, Haihong, Zhou, Aiyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611049/
https://www.ncbi.nlm.nih.gov/pubmed/37896670
http://dx.doi.org/10.3390/s23208577
Descripción
Sumario:This paper reports a method for calculating the electromagnetic force acting on an aluminum honeycomb sandwich panel moving in a magnetic field. This research is motivated by the non-contact electromagnetic detumbling technology for space non-cooperative targets. Past modeling of the electromagnetic forces and torques generally assumes that the target is homogeneous. However, aluminum honeycomb sandwich panels are extensively used in spacecraft structures to reduce weight without sacrificing structural strength and stiffness, which are so inhomogeneous and complicated that it is difficult to obtain the induced electromagnetic force even by numerical methods. An equivalent conductivity tensor of an aluminum honeycomb sandwich panel is proposed, which allows the aluminum honeycomb sandwich panel to be treated as a homogeneous structure when calculating the induced electromagnetic forces. The advantage of the equivalent conductivity tensor in the calculation of induced electromagnetic forces is verified by finite element simulations. The proposed method makes it possible to evaluate the electromagnetic force of a large aluminum honeycomb sandwich structure moving in a magnetic field.