Cargando…
Adaptive VMD–K-SVD-Based Rolling Bearing Fault Signal Enhancement Study
To address the challenges associated with nonlinearity, non-stationarity, susceptibility to redundant noise interference, and the difficulty in extracting fault feature signals from rolling bearing signals, this study introduces a novel combined approach. The proposed method utilizes the variational...
Autores principales: | Mao, Meijiao, Zeng, Kaixin, Tan, Zhifei, Zeng, Zhi, Hu, Zihua, Chen, Xiaogao, Qin, Changjiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611062/ https://www.ncbi.nlm.nih.gov/pubmed/37896721 http://dx.doi.org/10.3390/s23208629 |
Ejemplares similares
-
Rolling Bearing Fault Diagnosis Based on WGWOA-VMD-SVM
por: Zhou, Junbo, et al.
Publicado: (2022) -
Rolling Bearing Fault Diagnosis Based on VMD-MPE and PSO-SVM
por: Ye, Maoyou, et al.
Publicado: (2021) -
Utilizing SVD and VMD for Denoising Non-Stationary Signals of Roller Bearings
por: Wang, Qinghua, et al.
Publicado: (2021) -
GMPSO-VMD Algorithm and Its Application to Rolling Bearing Fault Feature Extraction
por: Ding, Jiakai, et al.
Publicado: (2020) -
Rolling Bearing Fault Diagnosis Based on WOA-VMD-MPE and MPSO-LSSVM
por: Jin, Zhihao, et al.
Publicado: (2022)