Cargando…
Multispectral Plant Disease Detection with Vision Transformer–Convolutional Neural Network Hybrid Approaches
Plant diseases pose a critical threat to global agricultural productivity, demanding timely detection for effective crop yield management. Traditional methods for disease identification are laborious and require specialised expertise. Leveraging cutting-edge deep learning algorithms, this study expl...
Autores principales: | De Silva, Malithi, Brown, Dane |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611079/ https://www.ncbi.nlm.nih.gov/pubmed/37896623 http://dx.doi.org/10.3390/s23208531 |
Ejemplares similares
-
Plant-CNN-ViT: Plant Classification with Ensemble of Convolutional Neural Networks and Vision Transformer
por: Lee, Chin Poo, et al.
Publicado: (2023) -
Convolutional Neural Network Approach for Multispectral Facial Presentation Attack Detection in Automated Border Control Systems
por: Sánchez-Sánchez, M. Araceli, et al.
Publicado: (2020) -
Landslide Susceptibility Mapping by Fusing Convolutional Neural Networks and Vision Transformer
por: Bao, Shuai, et al.
Publicado: (2022) -
Classifications of Multispectral Colorectal Cancer Tissues Using Convolution Neural Network
por: Haj-Hassan, Hawraa, et al.
Publicado: (2017) -
Multispectral Food Classification and Caloric Estimation Using Convolutional Neural Networks
por: Lee, Ki-Seung
Publicado: (2023)