Cargando…
AFTR: A Robustness Multi-Sensor Fusion Model for 3D Object Detection Based on Adaptive Fusion Transformer
Multi-modal sensors are the key to ensuring the robust and accurate operation of autonomous driving systems, where LiDAR and cameras are important on-board sensors. However, current fusion methods face challenges due to inconsistent multi-sensor data representations and the misalignment of dynamic s...
Autores principales: | Zhang, Yan, Liu, Kang, Bao, Hong, Qian, Xu, Wang, Zihan, Ye, Shiqing, Wang, Weicen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611098/ https://www.ncbi.nlm.nih.gov/pubmed/37896496 http://dx.doi.org/10.3390/s23208400 |
Ejemplares similares
-
One-Stage Multi-Sensor Data Fusion Convolutional Neural Network for 3D Object Detection
por: Li, Minle, et al.
Publicado: (2019) -
Robust Visual Tracking Based on Adaptive Multi-Feature Fusion Using the Tracking Reliability Criterion
por: Zhou, Lin, et al.
Publicado: (2020) -
Robust thermal infrared tracking via an adaptively multi-feature fusion model
por: Yuan, Di, et al.
Publicado: (2022) -
Multi-Modal Adaptive Fusion Transformer Network for the Estimation of Depression Level
por: Sun, Hao, et al.
Publicado: (2021) -
Fusion of an Ensemble of Augmented Image Detectors for Robust Object Detection
por: Wei, Pan, et al.
Publicado: (2018)