Cargando…
A Lightweight Unsupervised Intrusion Detection Model Based on Variational Auto-Encoder
With the gradual integration of internet technology and the industrial control field, industrial control systems (ICSs) have begun to access public networks on a large scale. Attackers use these public network interfaces to launch frequent invasions of industrial control systems, thus resulting in e...
Autores principales: | Ren, Yi, Feng, Kanghui, Hu, Fei, Chen, Liangyin, Chen, Yanru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611103/ https://www.ncbi.nlm.nih.gov/pubmed/37896500 http://dx.doi.org/10.3390/s23208407 |
Ejemplares similares
-
Unsupervised Phonocardiogram Analysis With Distribution Density Based Variational Auto-Encoders
por: Li, Shengchen, et al.
Publicado: (2021) -
Improving the Classification Effectiveness of Intrusion Detection by Using Improved Conditional Variational AutoEncoder and Deep Neural Network
por: Yang, Yanqing, et al.
Publicado: (2019) -
Towards Model Generalization for Intrusion Detection: Unsupervised Machine Learning Techniques
por: Verkerken, Miel, et al.
Publicado: (2021) -
Lightweight Long Short-Term Memory Variational Auto-Encoder for Multivariate Time Series Anomaly Detection in Industrial Control Systems
por: Fährmann, Daniel, et al.
Publicado: (2022) -
An Unsupervised Tunnel Damage Identification Method Based on Convolutional Variational Auto-Encoder and Wavelet Packet Analysis
por: Zhang, Yonglai, et al.
Publicado: (2022)