Cargando…
Snow Cover Response to Climatological Factors at the Beas River Basin of W. Himalayas from MODIS and ERA5 Datasets
Glaciers and snow are critical components of the hydrological cycle in the Himalayan region, and they play a vital role in river runoff. Therefore, it is crucial to monitor the glaciers and snow cover on a spatiotemporal basis to better understand the changes in their dynamics and their impact on ri...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611122/ https://www.ncbi.nlm.nih.gov/pubmed/37896481 http://dx.doi.org/10.3390/s23208387 |
_version_ | 1785128417567440896 |
---|---|
author | Sunita Gupta, Pardeep Kumar Petropoulos, George P. Gusain, Hemendra Singh Sood, Vishakha Gupta, Dileep Kumar Singh, Sartajvir Singh, Abhay Kumar |
author_facet | Sunita Gupta, Pardeep Kumar Petropoulos, George P. Gusain, Hemendra Singh Sood, Vishakha Gupta, Dileep Kumar Singh, Sartajvir Singh, Abhay Kumar |
author_sort | Sunita |
collection | PubMed |
description | Glaciers and snow are critical components of the hydrological cycle in the Himalayan region, and they play a vital role in river runoff. Therefore, it is crucial to monitor the glaciers and snow cover on a spatiotemporal basis to better understand the changes in their dynamics and their impact on river runoff. A significant amount of data is necessary to comprehend the dynamics of snow. Yet, the absence of weather stations in inaccessible locations and high elevation present multiple challenges for researchers through field surveys. However, the advancements made in remote sensing have become an effective tool for studying snow. In this article, the snow cover area (SCA) was analysed over the Beas River basin, Western Himalayas for the period 2003 to 2018. Moreover, its sensitivity towards temperature and precipitation was also analysed. To perform the analysis, two datasets, i.e., MODIS-based MOYDGL06 products for SCA estimation and the European Centre for Medium-Range Weather Forecasts (ECMWF) Atmospheric Reanalysis of the Global Climate (ERA5) for climate data were utilized. Results showed an average SCA of ~56% of its total area, with the highest annual SCA recorded in 2014 at ~61.84%. Conversely, the lowest annual SCA occurred in 2016, reaching ~49.2%. Notably, fluctuations in SCA are highly influenced by temperature, as evidenced by the strong connection between annual and seasonal SCA and temperature. The present study findings can have significant applications in fields such as water resource management, climate studies, and disaster management. |
format | Online Article Text |
id | pubmed-10611122 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106111222023-10-28 Snow Cover Response to Climatological Factors at the Beas River Basin of W. Himalayas from MODIS and ERA5 Datasets Sunita Gupta, Pardeep Kumar Petropoulos, George P. Gusain, Hemendra Singh Sood, Vishakha Gupta, Dileep Kumar Singh, Sartajvir Singh, Abhay Kumar Sensors (Basel) Article Glaciers and snow are critical components of the hydrological cycle in the Himalayan region, and they play a vital role in river runoff. Therefore, it is crucial to monitor the glaciers and snow cover on a spatiotemporal basis to better understand the changes in their dynamics and their impact on river runoff. A significant amount of data is necessary to comprehend the dynamics of snow. Yet, the absence of weather stations in inaccessible locations and high elevation present multiple challenges for researchers through field surveys. However, the advancements made in remote sensing have become an effective tool for studying snow. In this article, the snow cover area (SCA) was analysed over the Beas River basin, Western Himalayas for the period 2003 to 2018. Moreover, its sensitivity towards temperature and precipitation was also analysed. To perform the analysis, two datasets, i.e., MODIS-based MOYDGL06 products for SCA estimation and the European Centre for Medium-Range Weather Forecasts (ECMWF) Atmospheric Reanalysis of the Global Climate (ERA5) for climate data were utilized. Results showed an average SCA of ~56% of its total area, with the highest annual SCA recorded in 2014 at ~61.84%. Conversely, the lowest annual SCA occurred in 2016, reaching ~49.2%. Notably, fluctuations in SCA are highly influenced by temperature, as evidenced by the strong connection between annual and seasonal SCA and temperature. The present study findings can have significant applications in fields such as water resource management, climate studies, and disaster management. MDPI 2023-10-11 /pmc/articles/PMC10611122/ /pubmed/37896481 http://dx.doi.org/10.3390/s23208387 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sunita Gupta, Pardeep Kumar Petropoulos, George P. Gusain, Hemendra Singh Sood, Vishakha Gupta, Dileep Kumar Singh, Sartajvir Singh, Abhay Kumar Snow Cover Response to Climatological Factors at the Beas River Basin of W. Himalayas from MODIS and ERA5 Datasets |
title | Snow Cover Response to Climatological Factors at the Beas River Basin of W. Himalayas from MODIS and ERA5 Datasets |
title_full | Snow Cover Response to Climatological Factors at the Beas River Basin of W. Himalayas from MODIS and ERA5 Datasets |
title_fullStr | Snow Cover Response to Climatological Factors at the Beas River Basin of W. Himalayas from MODIS and ERA5 Datasets |
title_full_unstemmed | Snow Cover Response to Climatological Factors at the Beas River Basin of W. Himalayas from MODIS and ERA5 Datasets |
title_short | Snow Cover Response to Climatological Factors at the Beas River Basin of W. Himalayas from MODIS and ERA5 Datasets |
title_sort | snow cover response to climatological factors at the beas river basin of w. himalayas from modis and era5 datasets |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611122/ https://www.ncbi.nlm.nih.gov/pubmed/37896481 http://dx.doi.org/10.3390/s23208387 |
work_keys_str_mv | AT sunita snowcoverresponsetoclimatologicalfactorsatthebeasriverbasinofwhimalayasfrommodisandera5datasets AT guptapardeepkumar snowcoverresponsetoclimatologicalfactorsatthebeasriverbasinofwhimalayasfrommodisandera5datasets AT petropoulosgeorgep snowcoverresponsetoclimatologicalfactorsatthebeasriverbasinofwhimalayasfrommodisandera5datasets AT gusainhemendrasingh snowcoverresponsetoclimatologicalfactorsatthebeasriverbasinofwhimalayasfrommodisandera5datasets AT soodvishakha snowcoverresponsetoclimatologicalfactorsatthebeasriverbasinofwhimalayasfrommodisandera5datasets AT guptadileepkumar snowcoverresponsetoclimatologicalfactorsatthebeasriverbasinofwhimalayasfrommodisandera5datasets AT singhsartajvir snowcoverresponsetoclimatologicalfactorsatthebeasriverbasinofwhimalayasfrommodisandera5datasets AT singhabhaykumar snowcoverresponsetoclimatologicalfactorsatthebeasriverbasinofwhimalayasfrommodisandera5datasets |