Cargando…

An Electrochemical Sensor of Theophylline on a Boron-Doped Diamond Electrode Modified with Nickel Nanoparticles

Theophylline is a drug with a narrow therapeutic range. Electrochemical sensors are a potentially effective method for detecting theophylline concentration to prevent toxicity. In this work, a simple modification of a boron-doped diamond electrode using nickel nanoparticles was successfully performe...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiwanti, Prastika Krisma, Sari, Anis Puspita, Wafiroh, Siti, Hartati, Yeni Wahyuni, Gunlazuardi, Jarnuzi, Putri, Yulia M. T. A., Kondo, Takeshi, Anjani, Qonita Kurnia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611131/
https://www.ncbi.nlm.nih.gov/pubmed/37896690
http://dx.doi.org/10.3390/s23208597
Descripción
Sumario:Theophylline is a drug with a narrow therapeutic range. Electrochemical sensors are a potentially effective method for detecting theophylline concentration to prevent toxicity. In this work, a simple modification of a boron-doped diamond electrode using nickel nanoparticles was successfully performed for a theophylline electrochemical sensor. The modified electrode was characterized using a scanning electron microscope and X-ray photoelectron spectroscopy. Square wave voltammetry and cyclic voltammetry methods were used to study the electrochemical behavior of theophylline. The modified nickel nanoparticles on the boron-doped diamond electrode exhibited an electrochemically active surface area of 0.0081 cm(2), which is larger than the unmodified boron-doped diamond’s area of 0.0011 cm(2). This modified electrode demonstrated a low limit of detection of 2.79 µM within the linear concentration range from 30 to 100 µM. Moreover, the modified boron-doped diamond electrode also showed selective properties against D-glucose, ammonium sulfate, and urea. In the real sample analysis using artificial urine, the boron-doped diamond electrode with nickel nanoparticle modifications achieved a %recovery of 105.10%, with a good precision of less than 5%. The results of this work indicate that the developed method using nickel nanoparticles on a boron-doped diamond electrode is promising for the determination of theophylline.