Cargando…
Self-Attention-Based Deep Convolution LSTM Framework for Sensor-Based Badminton Activity Recognition
Sensor-based human activity recognition aims to classify human activities or behaviors according to the data from wearable or embedded sensors, leading to a new direction in the field of Artificial Intelligence. When the activities become high-level and sophisticated, such as in the multiple technic...
Autores principales: | Deng, Jingyang, Zhang, Shuyi, Ma, Jinwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611139/ https://www.ncbi.nlm.nih.gov/pubmed/37896468 http://dx.doi.org/10.3390/s23208373 |
Ejemplares similares
-
Deep CNN-LSTM With Self-Attention Model for Human Activity Recognition Using Wearable Sensor
Publicado: (2022) -
A Convolutional Neural Network Face Recognition Method Based on BiLSTM and Attention Mechanism
por: Qi, Xiaobo, et al.
Publicado: (2023) -
Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition
por: Ordóñez, Francisco Javier, et al.
Publicado: (2016) -
Attention Based CNN-ConvLSTM for Pedestrian Attribute Recognition
por: Li, Yang, et al.
Publicado: (2020) -
Enhancer-LSTMAtt: A Bi-LSTM and Attention-Based Deep Learning Method for Enhancer Recognition
por: Huang, Guohua, et al.
Publicado: (2022)