Cargando…

Diffusion Model for DAS-VSP Data Denoising

Distributed acoustic sensing (DAS) has emerged as a transformational technology for seismic data acquisition. However, noise remains a major impediment, necessitating advanced denoising techniques. This study pioneers the application of diffusion models, a type of generative model, for DAS vertical...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Donglin, Fu, Lei, Kazei, Vladimir, Li, Weichang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611154/
https://www.ncbi.nlm.nih.gov/pubmed/37896712
http://dx.doi.org/10.3390/s23208619
Descripción
Sumario:Distributed acoustic sensing (DAS) has emerged as a transformational technology for seismic data acquisition. However, noise remains a major impediment, necessitating advanced denoising techniques. This study pioneers the application of diffusion models, a type of generative model, for DAS vertical seismic profile (VSP) data denoising. The diffusion network is trained on a new generated synthetic dataset that accommodates variations in the acquisition parameters. The trained model is applied to suppress noise in synthetic and field DAS-VSP data. The results demonstrate the model’s effectiveness in removing various noise types with minimal signal leakage, outperforming conventional methods. This research signifies diffusion models’ potential for DAS processing.