Cargando…

LPI Radar Detection Based on Deep Learning Approach with Periodic Autocorrelation Function

In electronic warfare systems, detecting low-probability-of-intercept (LPI) radar signals poses a significant challenge due to the signal power being lower than the noise power. Techniques using statistical or deep learning models have been proposed for detecting low-power signals. However, as these...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Do-Hyun, Jeon, Min-Wook, Shin, Da-Min, Kim, Hyoung-Nam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611164/
https://www.ncbi.nlm.nih.gov/pubmed/37896657
http://dx.doi.org/10.3390/s23208564
Descripción
Sumario:In electronic warfare systems, detecting low-probability-of-intercept (LPI) radar signals poses a significant challenge due to the signal power being lower than the noise power. Techniques using statistical or deep learning models have been proposed for detecting low-power signals. However, as these methods overlook the inherent characteristics of radar signals, they possess limitations in radar signal detection performance. We introduce a deep learning-based detection model that capitalizes on the periodicity characteristic of radar signals. The periodic autocorrelation function (PACF) is an effective time-series data analysis method to capture the pulse repetition characteristic in the intercepted signal. Our detection model extracts radar signal features from PACF and then detects the signal using a neural network employing long short-term memory to effectively process time-series features. The simulation results show that our detection model outperforms existing deep learning-based models that use conventional autocorrelation function or spectrogram as an input. Furthermore, the robust feature extraction technique allows our proposed model to achieve high performance even with a shallow neural network architecture and provides a lighter model than existing models.