Cargando…

Effectiveness of Tap Water in Reducing the Generation of Ultrafine Wear Particles from the Wheel-Rail Contact by Eliminating the Water Vapor Effect

This study aimed to assess the impact of tap water application on reducing the generation of ultrafine particles from the wheel-rail contact using a twin-disk rig under dry and wet conditions, with train velocities of 45 and 80 km/h. A small amount of 0.3 L/min tap water was applied at the wheel-rai...

Descripción completa

Detalles Bibliográficos
Autor principal: Lee, HyunWook
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611177/
https://www.ncbi.nlm.nih.gov/pubmed/37888723
http://dx.doi.org/10.3390/toxics11100873
Descripción
Sumario:This study aimed to assess the impact of tap water application on reducing the generation of ultrafine particles from the wheel-rail contact using a twin-disk rig under dry and wet conditions, with train velocities of 45 and 80 km/h. A small amount of 0.3 L/min tap water was applied at the wheel-rail contact, and a diffusion dryer was used to eliminate water vapor. The Fast Mobility Particle Sizer measured the number concentration (NC) of nano-sized wear particles in the range of 6 to 560 nm. The tap water application method effectively reduced the NC of ultrafine and fine particles by 67–72% and 86–88%, respectively. Positive reduction rates were observed for all diameters at 45 km/h and for most diameters, except for approximately 70 nm and 80 nm, at 80 km/h. Even with a small amount of water, this approach successfully decreased nano-sized wear particle generation. However, the potential influence of mineral crystals in tap water on NC requires further investigation. Overall, this method shows promise for enhancing air quality and public health by mitigating nano-sized wear particle generation in subway systems.