Cargando…
Characterisation of Cognitive Load Using Machine Learning Classifiers of Electroencephalogram Data
A high cognitive load can overload a person, potentially resulting in catastrophic accidents. It is therefore important to ensure the level of cognitive load associated with safety-critical tasks (such as driving a vehicle) remains manageable for drivers, enabling them to respond appropriately to ch...
Autores principales: | Wang, Qi, Smythe, Daniel, Cao, Jun, Hu, Zhilin, Proctor, Karl J., Owens, Andrew P., Zhao, Yifan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611194/ https://www.ncbi.nlm.nih.gov/pubmed/37896621 http://dx.doi.org/10.3390/s23208528 |
Ejemplares similares
-
Sex‐related patterns in the electroencephalogram and their relevance in machine learning classifiers
por: Jochmann, Thomas, et al.
Publicado: (2023) -
Use of electroencephalogram, gait, and their combined signals for classifying cognitive impairment and normal cognition
por: Min, Jin-Young, et al.
Publicado: (2022) -
NOVEL APPROACH EXPLAINS SPATIO-SPECTRAL INTERACTIONS IN RAW ELECTROENCEPHALOGRAM DEEP LEARNING CLASSIFIERS
por: Ellis, Charles A., et al.
Publicado: (2023) -
A prospective multicenter validation study of a machine learning algorithm classifier on quantitative electroencephalogram for differentiating between dementia with Lewy bodies and Alzheimer’s dementia
por: Suzuki, Yukiko, et al.
Publicado: (2022) -
Classifying Cognitive Profiles Using Machine Learning with Privileged Information in Mild Cognitive Impairment
por: Alahmadi, Hanin H., et al.
Publicado: (2016)