Cargando…
Deep-Sea Biological Detection Method Based on Lightweight YOLOv5n
Deep-sea biological detection is essential for deep-sea resource research and conservation. However, due to the poor image quality and insufficient image samples in the complex deep-sea imaging environment, resulting in poor detection results. Furthermore, most existing detection models accomplish h...
Autores principales: | Ding, Zhongjun, Liu, Chen, Li, Dewei, Yi, Guangrui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611201/ https://www.ncbi.nlm.nih.gov/pubmed/37896693 http://dx.doi.org/10.3390/s23208600 |
Ejemplares similares
-
YOLOv5-AC: Attention Mechanism-Based Lightweight YOLOv5 for Track Pedestrian Detection
por: Lv, Haohui, et al.
Publicado: (2022) -
Research and Implementation of Millet Ear Detection Method Based on Lightweight YOLOv5
por: Qiu, Shujin, et al.
Publicado: (2023) -
Fast Helmet and License Plate Detection Based on Lightweight YOLOv5
por: Wei, Chenyang, et al.
Publicado: (2023) -
Strip steel surface defect detection based on lightweight YOLOv5
por: Zhang, Yongping, et al.
Publicado: (2023) -
Lightweight Algorithm for Apple Detection Based on an Improved YOLOv5 Model
por: Sun, Yu, et al.
Publicado: (2023)