Cargando…
Federated and Transfer Learning Methods for the Classification of Melanoma and Nonmelanoma Skin Cancers: A Prospective Study
Skin cancer is considered a dangerous type of cancer with a high global mortality rate. Manual skin cancer diagnosis is a challenging and time-consuming method due to the complexity of the disease. Recently, deep learning and transfer learning have been the most effective methods for diagnosing this...
Autores principales: | Riaz, Shafia, Naeem, Ahmad, Malik, Hassaan, Naqvi, Rizwan Ali, Loh, Woong-Kee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611214/ https://www.ncbi.nlm.nih.gov/pubmed/37896548 http://dx.doi.org/10.3390/s23208457 |
Ejemplares similares
-
DMFL_Net: A Federated Learning-Based Framework for the Classification of COVID-19 from Multiple Chest Diseases Using X-rays
por: Malik, Hassaan, et al.
Publicado: (2023) -
Blockchain-Federated and Deep-Learning-Based Ensembling of Capsule Network with Incremental Extreme Learning Machines for Classification of COVID-19 Using CT Scans
por: Malik, Hassaan, et al.
Publicado: (2023) -
A Comprehensive Analysis of Recent Deep and Federated-Learning-Based Methodologies for Brain Tumor Diagnosis
por: Naeem, Ahmad, et al.
Publicado: (2022) -
DSCC_Net: Multi-Classification Deep Learning Models for Diagnosing of Skin Cancer Using Dermoscopic Images
por: Tahir, Maryam, et al.
Publicado: (2023) -
Nonmelanoma skin cancer in the Federal State of Saarland, Germany, 1995–1999
por: Stang, A, et al.
Publicado: (2003)