Cargando…
Quantifying the Effects of Network Latency for a Teleoperated Robot
The development of teleoperated devices is a growing area of study since it can improve cost effectiveness, safety, and healthcare accessibility. However, due to the large distances involved in using teleoperated devices, these systems suffer from communication degradation, such as latency or signal...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611222/ https://www.ncbi.nlm.nih.gov/pubmed/37896531 http://dx.doi.org/10.3390/s23208438 |
Sumario: | The development of teleoperated devices is a growing area of study since it can improve cost effectiveness, safety, and healthcare accessibility. However, due to the large distances involved in using teleoperated devices, these systems suffer from communication degradation, such as latency or signal loss. Understanding degradation is important to develop and improve the effectiveness of future systems. The objective of this research is to identify how a teleoperated system’s behavior is affected by latency and to investigate possible methods to mitigate its effects. In this research, the end-effector position error of a 4-degree-of-freedom (4-DOF) teleultrasound robot was measured and correlated with measured time delay. The tests were conducted on a Wireless Local Area Network (WLAN) and a Virtual Local Area Network (VLAN) to monitor noticeable changes in position error with different network configurations. In this study, it was verified that the communication channel between master and slave stations was a significant source of delay. In addition, position error had a strong positive correlation with delay time. The WLAN configuration achieved an average of 300 ms of delay and a maximum displacement error of 7.8 mm. The VLAN configuration showed a noticeable improvement with a 40% decrease in average delay time and a 70% decrease in maximum displacement error. The contribution of this work includes quantifying the effects of delay on end-effector position error and the relative performance between different network configurations. |
---|