Cargando…

SLAV-Sim: A Framework for Self-Learning Autonomous Vehicle Simulation

With the advent of autonomous vehicles, sensors and algorithm testing have become crucial parts of the autonomous vehicle development cycle. Having access to real-world sensors and vehicles is a dream for researchers and small-scale original equipment manufacturers (OEMs) due to the software and har...

Descripción completa

Detalles Bibliográficos
Autores principales: Crewe, Jacob, Humnabadkar, Aditya, Liu, Yonghuai, Ahmed, Amr, Behera, Ardhendu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611232/
https://www.ncbi.nlm.nih.gov/pubmed/37896742
http://dx.doi.org/10.3390/s23208649
Descripción
Sumario:With the advent of autonomous vehicles, sensors and algorithm testing have become crucial parts of the autonomous vehicle development cycle. Having access to real-world sensors and vehicles is a dream for researchers and small-scale original equipment manufacturers (OEMs) due to the software and hardware development life-cycle duration and high costs. Therefore, simulator-based virtual testing has gained traction over the years as the preferred testing method due to its low cost, efficiency, and effectiveness in executing a wide range of testing scenarios. Companies like ANSYS and NVIDIA have come up with robust simulators, and open-source simulators such as CARLA have also populated the market. However, there is a lack of lightweight and simple simulators catering to specific test cases. In this paper, we introduce the SLAV-Sim, a lightweight simulator that specifically trains the behaviour of a self-learning autonomous vehicle. This simulator has been created using the Unity engine and provides an end-to-end virtual testing framework for different reinforcement learning (RL) algorithms in a variety of scenarios using camera sensors and raycasts.