Cargando…
SLAV-Sim: A Framework for Self-Learning Autonomous Vehicle Simulation
With the advent of autonomous vehicles, sensors and algorithm testing have become crucial parts of the autonomous vehicle development cycle. Having access to real-world sensors and vehicles is a dream for researchers and small-scale original equipment manufacturers (OEMs) due to the software and har...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611232/ https://www.ncbi.nlm.nih.gov/pubmed/37896742 http://dx.doi.org/10.3390/s23208649 |
Sumario: | With the advent of autonomous vehicles, sensors and algorithm testing have become crucial parts of the autonomous vehicle development cycle. Having access to real-world sensors and vehicles is a dream for researchers and small-scale original equipment manufacturers (OEMs) due to the software and hardware development life-cycle duration and high costs. Therefore, simulator-based virtual testing has gained traction over the years as the preferred testing method due to its low cost, efficiency, and effectiveness in executing a wide range of testing scenarios. Companies like ANSYS and NVIDIA have come up with robust simulators, and open-source simulators such as CARLA have also populated the market. However, there is a lack of lightweight and simple simulators catering to specific test cases. In this paper, we introduce the SLAV-Sim, a lightweight simulator that specifically trains the behaviour of a self-learning autonomous vehicle. This simulator has been created using the Unity engine and provides an end-to-end virtual testing framework for different reinforcement learning (RL) algorithms in a variety of scenarios using camera sensors and raycasts. |
---|