Cargando…

A Flow Sensing Device Formed Exclusively by Employing Additive Manufacturing for On-Site Fabrication Aboard a Ship

This work concerns the design, fabrication, and testing of a novel air-flow sensor employing exclusively additive manufacturing that can be fabricated on-site, aboard a ship, or in a similarly remote area, without relying on external manufacturing facilities. The developed device’s principle of oper...

Descripción completa

Detalles Bibliográficos
Autores principales: Pagonis, Dimitrios-Nikolaos, Matsoukas, Ioannis, Kaltsas, Grigoris, Pilatis, Aggelos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611284/
https://www.ncbi.nlm.nih.gov/pubmed/37896574
http://dx.doi.org/10.3390/s23208481
Descripción
Sumario:This work concerns the design, fabrication, and testing of a novel air-flow sensor employing exclusively additive manufacturing that can be fabricated on-site, aboard a ship, or in a similarly remote area, without relying on external manufacturing facilities. The developed device’s principle of operation is based on vortex shedding; its novelty focuses on employing solely additive manufacturing technology, for the manufacturing—in a single process step—of all the sensor’s main elements. In more detail, the required flow-shaping housing, the appropriate piezoresistive sensing element, and the electrical interconnection pads are all constructed in a single process step, through standard Fused Deposition Modeling (FDM) 3D technology. Direct communication to the necessary readout circuitry can be easily achieved through standard soldering utilizing the integrated contact pads of the sensor. The prototype was preliminary characterized, validating its proper functionality. Key features of the proposed device are low cost, fast on-site manufacturing of the entire measuring device, robustness, and simplicity, suggesting numerous potential applications in the shipbuilding industry and other industrial sectors.