Cargando…
TranSpec3D: A Novel Measurement Principle to Generate A Non-Synthetic Data Set of Transparent and Specular Surfaces without Object Preparation
Estimating depth from images is a common technique in 3D perception. However, dealing with non-Lambertian materials, e.g., transparent or specular, is still nowadays an open challenge. However, to overcome this challenge with deep stereo matching networks or monocular depth estimation, data sets wit...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611300/ https://www.ncbi.nlm.nih.gov/pubmed/37896662 http://dx.doi.org/10.3390/s23208567 |
_version_ | 1785128458882383872 |
---|---|
author | Junger, Christina Speck, Henri Landmann, Martin Srokos, Kevin Notni, Gunther |
author_facet | Junger, Christina Speck, Henri Landmann, Martin Srokos, Kevin Notni, Gunther |
author_sort | Junger, Christina |
collection | PubMed |
description | Estimating depth from images is a common technique in 3D perception. However, dealing with non-Lambertian materials, e.g., transparent or specular, is still nowadays an open challenge. However, to overcome this challenge with deep stereo matching networks or monocular depth estimation, data sets with non-Lambertian objects are mandatory. Currently, only few real-world data sets are available. This is due to the high effort and time-consuming process of generating these data sets with ground truth. Currently, transparent objects must be prepared, e.g., painted or powdered, or an opaque twin of the non-Lambertian object is needed. This makes data acquisition very time consuming and elaborate. We present a new measurement principle for how to generate a real data set of transparent and specular surfaces without object preparation techniques, which greatly reduces the effort and time required for data collection. For this purpose, we use a thermal 3D sensor as a reference system, which allows the 3D detection of transparent and reflective surfaces without object preparation. In addition, we publish the first-ever real stereo data set, called TranSpec3D, where ground truth disparities without object preparation were generated using this measurement principle. The data set contains 110 objects and consists of 148 scenes, each taken in different lighting environments, which increases the size of the data set and creates different reflections on the surface. We also show the advantages and disadvantages of our measurement principle and data set compared to the Booster data set (generated with object preparation), as well as the current limitations of our novel method. |
format | Online Article Text |
id | pubmed-10611300 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106113002023-10-28 TranSpec3D: A Novel Measurement Principle to Generate A Non-Synthetic Data Set of Transparent and Specular Surfaces without Object Preparation Junger, Christina Speck, Henri Landmann, Martin Srokos, Kevin Notni, Gunther Sensors (Basel) Article Estimating depth from images is a common technique in 3D perception. However, dealing with non-Lambertian materials, e.g., transparent or specular, is still nowadays an open challenge. However, to overcome this challenge with deep stereo matching networks or monocular depth estimation, data sets with non-Lambertian objects are mandatory. Currently, only few real-world data sets are available. This is due to the high effort and time-consuming process of generating these data sets with ground truth. Currently, transparent objects must be prepared, e.g., painted or powdered, or an opaque twin of the non-Lambertian object is needed. This makes data acquisition very time consuming and elaborate. We present a new measurement principle for how to generate a real data set of transparent and specular surfaces without object preparation techniques, which greatly reduces the effort and time required for data collection. For this purpose, we use a thermal 3D sensor as a reference system, which allows the 3D detection of transparent and reflective surfaces without object preparation. In addition, we publish the first-ever real stereo data set, called TranSpec3D, where ground truth disparities without object preparation were generated using this measurement principle. The data set contains 110 objects and consists of 148 scenes, each taken in different lighting environments, which increases the size of the data set and creates different reflections on the surface. We also show the advantages and disadvantages of our measurement principle and data set compared to the Booster data set (generated with object preparation), as well as the current limitations of our novel method. MDPI 2023-10-18 /pmc/articles/PMC10611300/ /pubmed/37896662 http://dx.doi.org/10.3390/s23208567 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Junger, Christina Speck, Henri Landmann, Martin Srokos, Kevin Notni, Gunther TranSpec3D: A Novel Measurement Principle to Generate A Non-Synthetic Data Set of Transparent and Specular Surfaces without Object Preparation |
title | TranSpec3D: A Novel Measurement Principle to Generate A Non-Synthetic Data Set of Transparent and Specular Surfaces without Object Preparation |
title_full | TranSpec3D: A Novel Measurement Principle to Generate A Non-Synthetic Data Set of Transparent and Specular Surfaces without Object Preparation |
title_fullStr | TranSpec3D: A Novel Measurement Principle to Generate A Non-Synthetic Data Set of Transparent and Specular Surfaces without Object Preparation |
title_full_unstemmed | TranSpec3D: A Novel Measurement Principle to Generate A Non-Synthetic Data Set of Transparent and Specular Surfaces without Object Preparation |
title_short | TranSpec3D: A Novel Measurement Principle to Generate A Non-Synthetic Data Set of Transparent and Specular Surfaces without Object Preparation |
title_sort | transpec3d: a novel measurement principle to generate a non-synthetic data set of transparent and specular surfaces without object preparation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611300/ https://www.ncbi.nlm.nih.gov/pubmed/37896662 http://dx.doi.org/10.3390/s23208567 |
work_keys_str_mv | AT jungerchristina transpec3danovelmeasurementprincipletogenerateanonsyntheticdatasetoftransparentandspecularsurfaceswithoutobjectpreparation AT speckhenri transpec3danovelmeasurementprincipletogenerateanonsyntheticdatasetoftransparentandspecularsurfaceswithoutobjectpreparation AT landmannmartin transpec3danovelmeasurementprincipletogenerateanonsyntheticdatasetoftransparentandspecularsurfaceswithoutobjectpreparation AT srokoskevin transpec3danovelmeasurementprincipletogenerateanonsyntheticdatasetoftransparentandspecularsurfaceswithoutobjectpreparation AT notnigunther transpec3danovelmeasurementprincipletogenerateanonsyntheticdatasetoftransparentandspecularsurfaceswithoutobjectpreparation |