Cargando…
Controllable Unsupervised Snow Synthesis by Latent Style Space Manipulation
In the field of intelligent vehicle technology, there is a high dependence on images captured under challenging conditions to develop robust perception algorithms. However, acquiring these images can be both time-consuming and dangerous. To address this issue, unpaired image-to-image translation mod...
Autores principales: | Yang, Hanting, Carballo, Alexander, Zhang, Yuxiao, Takeda, Kazuya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611349/ https://www.ncbi.nlm.nih.gov/pubmed/37896492 http://dx.doi.org/10.3390/s23208398 |
Ejemplares similares
-
Framework for Generation and Removal of Multiple Types of Adverse Weather from Driving Scene Images
por: Yang, Hanting, et al.
Publicado: (2023) -
L-DIG: A GAN-Based Method for LiDAR Point Cloud Processing under Snow Driving Conditions
por: Zhang, Yuxiao, et al.
Publicado: (2023) -
Latent space unsupervised semantic segmentation
por: Strommen, Knut J., et al.
Publicado: (2023) -
An unsupervised style normalization method for cytopathology images
por: Chen, Xihao, et al.
Publicado: (2021) -
Unsupervised learning reveals interpretable latent representations for translucency perception
por: Liao, Chenxi, et al.
Publicado: (2023)