Cargando…
Ensemble Machine Learning of Gradient Boosting (XGBoost, LightGBM, CatBoost) and Attention-Based CNN-LSTM for Harmful Algal Blooms Forecasting
Harmful algal blooms (HABs) are a serious threat to ecosystems and human health. The accurate prediction of HABs is crucial for their proactive preparation and management. While mechanism-based numerical modeling, such as the Environmental Fluid Dynamics Code (EFDC), has been widely used in the past...
Autores principales: | Ahn, Jung Min, Kim, Jungwook, Kim, Kyunghyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611362/ https://www.ncbi.nlm.nih.gov/pubmed/37888638 http://dx.doi.org/10.3390/toxins15100608 |
Ejemplares similares
-
An Economic Forecasting Method Based on the LightGBM-Optimized LSTM and Time-Series Model
por: Lv, Jiehua, et al.
Publicado: (2021) -
Diagnosis of Diabetes Mellitus Using Gradient Boosting Machine (LightGBM)
por: Rufo, Derara Duba, et al.
Publicado: (2021) -
Retracted: An Economic Forecasting Method Based on the LightGBM-Optimized LSTM and Time-Series Model
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
CatBoost for big data: an interdisciplinary review
por: Hancock, John T., et al.
Publicado: (2020) -
A Two-Stage Multistep-Ahead Electricity Load Forecasting Scheme Based on LightGBM and Attention-BiLSTM
por: Park, Jinwoong, et al.
Publicado: (2021)