Cargando…
Modular Neural Networks for Osteoporosis Detection in Mandibular Cone-Beam Computed Tomography Scans
In this technical note, we examine the capabilities of deep convolutional neural networks (DCNNs) for diagnosing osteoporosis through cone-beam computed tomography (CBCT) scans of the mandible. The evaluation was conducted using 188 patients’ mandibular CBCT images utilizing DCNN models built on the...
Autores principales: | Namatevs, Ivars, Nikulins, Arturs, Edelmers, Edgars, Neimane, Laura, Slaidina, Anda, Radzins, Oskars, Sudars, Kaspars |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611366/ https://www.ncbi.nlm.nih.gov/pubmed/37888733 http://dx.doi.org/10.3390/tomography9050141 |
Ejemplares similares
-
Improving Performance of the PRYSTINE Traffic Sign Classification by Using a Perturbation-Based Explainability Approach
por: Sudars, Kaspars, et al.
Publicado: (2022) -
Dataset of annotated food crops and weed images for robotic computer vision control
por: Sudars, Kaspars, et al.
Publicado: (2020) -
QuinceSet: Dataset of annotated Japanese quince images for object detection
por: Kaufmane, Edīte, et al.
Publicado: (2022) -
Cellulose Nanocrystals vs. Cellulose Nanofibers: A Comparative Study of Reinforcing Effects in UV-Cured Vegetable Oil Nanocomposites
por: Barkane, Anda, et al.
Publicado: (2021) -
Spent coffee waste as a renewable source for the production of sustainable poly(butylene succinate) biocomposites from a circular economy perspective
por: Gaidukova, Gerda, et al.
Publicado: (2021)