Cargando…

Organic Electronics—Microfluidics/Lab on a Chip Integration in Analytical Applications

Organic electronics (OE) technology has matured in displays and is advancing in solid-state lighting applications. Other promising and growing uses of this technology are in (bio)chemical sensing, imaging, in vitro cell monitoring, and other biomedical diagnostics that can benefit from low-cost, eff...

Descripción completa

Detalles Bibliográficos
Autores principales: Shinar, Ruth, Shinar, Joseph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611406/
https://www.ncbi.nlm.nih.gov/pubmed/37896581
http://dx.doi.org/10.3390/s23208488
Descripción
Sumario:Organic electronics (OE) technology has matured in displays and is advancing in solid-state lighting applications. Other promising and growing uses of this technology are in (bio)chemical sensing, imaging, in vitro cell monitoring, and other biomedical diagnostics that can benefit from low-cost, efficient small devices, including wearable designs that can be fabricated on glass or flexible plastic. OE devices such as organic LEDs, organic and hybrid perovskite-based photodetectors, and organic thin-film transistors, notably organic electrochemical transistors, are utilized in such sensing and (bio)medical applications. The integration of compact and sensitive OE devices with microfluidic channels and lab-on-a-chip (LOC) structures is very promising. This survey focuses on studies that utilize this integration for a variety of OE tools. It is not intended to encompass all studies in the area, but to present examples of the advances and the potential of such OE technology, with a focus on microfluidics/LOC integration for efficient wide-ranging sensing and biomedical applications.