Cargando…
Deep learning for the detection of benign and malignant pulmonary nodules in non-screening chest CT scans
BACKGROUND: Outside a screening program, early-stage lung cancer is generally diagnosed after the detection of incidental nodules in clinically ordered chest CT scans. Despite the advances in artificial intelligence (AI) systems for lung cancer detection, clinical validation of these systems is lack...
Autores principales: | Hendrix, Ward, Hendrix, Nils, Scholten, Ernst T., Mourits, Mariëlle, Trap-de Jong, Joline, Schalekamp, Steven, Korst, Mike, van Leuken, Maarten, van Ginneken, Bram, Prokop, Mathias, Rutten, Matthieu, Jacobs, Colin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611755/ https://www.ncbi.nlm.nih.gov/pubmed/37891360 http://dx.doi.org/10.1038/s43856-023-00388-5 |
Ejemplares similares
-
Trends in the incidence of pulmonary nodules in chest computed tomography: 10-year results from two Dutch hospitals
por: Hendrix, Ward, et al.
Publicado: (2023) -
COVID-19 on Chest Radiographs: A Multireader Evaluation of an Artificial Intelligence System
por: Murphy, Keelin, et al.
Publicado: (2020) -
Explainable emphysema detection on chest radiographs with deep learning
por: Çallı, Erdi, et al.
Publicado: (2022) -
Incidental perifissural nodules on routine chest computed tomography: lung cancer or not?
por: Mets, Onno M., et al.
Publicado: (2017) -
Malignancy estimation of Lung-RADS criteria for subsolid nodules on CT: accuracy of low and high risk spectrum when using NLST nodules
por: Chung, Kaman, et al.
Publicado: (2017)