Cargando…

Multi-task deep learning-based radiomic nomogram for prognostic prediction in locoregionally advanced nasopharyngeal carcinoma

PURPOSE: Prognostic prediction is crucial to guide individual treatment for locoregionally advanced nasopharyngeal carcinoma (LA-NPC) patients. Recently, multi-task deep learning was explored for joint prognostic prediction and tumor segmentation in various cancers, resulting in promising performanc...

Descripción completa

Detalles Bibliográficos
Autores principales: Gu, Bingxin, Meng, Mingyuan, Xu, Mingzhen, Feng, David Dagan, Bi, Lei, Kim, Jinman, Song, Shaoli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611876/
https://www.ncbi.nlm.nih.gov/pubmed/37596343
http://dx.doi.org/10.1007/s00259-023-06399-7
Descripción
Sumario:PURPOSE: Prognostic prediction is crucial to guide individual treatment for locoregionally advanced nasopharyngeal carcinoma (LA-NPC) patients. Recently, multi-task deep learning was explored for joint prognostic prediction and tumor segmentation in various cancers, resulting in promising performance. This study aims to evaluate the clinical value of multi-task deep learning for prognostic prediction in LA-NPC patients. METHODS: A total of 886 LA-NPC patients acquired from two medical centers were enrolled including clinical data, [(18)F]FDG PET/CT images, and follow-up of progression-free survival (PFS). We adopted a deep multi-task survival model (DeepMTS) to jointly perform prognostic prediction (DeepMTS-Score) and tumor segmentation from FDG-PET/CT images. The DeepMTS-derived segmentation masks were leveraged to extract handcrafted radiomics features, which were also used for prognostic prediction (AutoRadio-Score). Finally, we developed a multi-task deep learning-based radiomic (MTDLR) nomogram by integrating DeepMTS-Score, AutoRadio-Score, and clinical data. Harrell's concordance indices (C-index) and time-independent receiver operating characteristic (ROC) analysis were used to evaluate the discriminative ability of the proposed MTDLR nomogram. For patient stratification, the PFS rates of high- and low-risk patients were calculated using Kaplan–Meier method and compared with the observed PFS probability. RESULTS: Our MTDLR nomogram achieved C-index of 0.818 (95% confidence interval (CI): 0.785–0.851), 0.752 (95% CI: 0.638–0.865), and 0.717 (95% CI: 0.641–0.793) and area under curve (AUC) of 0.859 (95% CI: 0.822–0.895), 0.769 (95% CI: 0.642–0.896), and 0.730 (95% CI: 0.634–0.826) in the training, internal validation, and external validation cohorts, which showed a statistically significant improvement over conventional radiomic nomograms. Our nomogram also divided patients into significantly different high- and low-risk groups. CONCLUSION: Our study demonstrated that MTDLR nomogram can perform reliable and accurate prognostic prediction in LA-NPC patients, and also enabled better patient stratification, which could facilitate personalized treatment planning. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00259-023-06399-7.