Cargando…

Evaluation of Direct Detection Protocols for Poliovirus from Stool Samples of Acute Flaccid Paralysis Patients

Polio surveillance in the Global Polio Eradication Initiative has been conducted with virus isolation from stool samples of acute flaccid paralysis (AFP) cases. Under the current biorisk management/regulations, challenges arise in the timelines of the report, sensitivity of the test and containment...

Descripción completa

Detalles Bibliográficos
Autores principales: Ueno, Minami Kikuchi, Kitamura, Kouichi, Nishimura, Yorihiro, Arita, Minetaro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10612058/
https://www.ncbi.nlm.nih.gov/pubmed/37896890
http://dx.doi.org/10.3390/v15102113
Descripción
Sumario:Polio surveillance in the Global Polio Eradication Initiative has been conducted with virus isolation from stool samples of acute flaccid paralysis (AFP) cases. Under the current biorisk management/regulations, challenges arise in the timelines of the report, sensitivity of the test and containment of poliovirus (PV) isolates. In the present study, we evaluated protocols of previously reported direct detection (DD) methods targeting the VP1 or VP4–VP2 regions of the PV genome in terms of sensitivity and sequencability. An optimized protocol targeting the entire-capsid region for the VP1 sequencing showed a high sensitivity (limit of detection = 82 copies of PV genome) with a simpler and faster reaction than reported ones (i.e., with the addition of all the primers at the start of the reaction, the RT-PCR reaction finishes within 2.5 h). The DD methods targeting the VP1 region detected PV in 60 to 80% of PV-positive stool samples from AFP cases; however, minor populations of PV strains in the samples with virus mixtures were missed by the methods. Sequencability of the DD methods was primarily determined by the efficiency of the PCRs for both Sanger and nanopore sequencing. The DD method targeting the VP4–VP2 region showed higher sensitivity than that targeting the VP1 region (limit of detection = 25 copies of PV genome) and successfully detected PV from all the stool samples examined. These results suggest that DD methods are effective for the detection of PV and that further improvement of the sensitivity is essential to serve as an alternative to the current polio surveillance algorithm.