Cargando…

Nano-Sized Chimeric Human Papillomavirus-16 L1 Virus-like Particles Displaying Mycobacterium tuberculosis Antigen Ag85B Enhance Ag85B-Specific Immune Responses in Female C57BL/c Mice

Bacillus Calmette–Guerin (BCG), the only current vaccine against tuberculosis (TB) that is licensed in clinics, successfully protects infants and young children against several TB types, such as TB meningitis and miliary TB, but it is ineffective in protecting adolescents and adults against pulmonar...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Fangbin, Zhang, Dongmei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10612075/
https://www.ncbi.nlm.nih.gov/pubmed/37896900
http://dx.doi.org/10.3390/v15102123
_version_ 1785128621684293632
author Zhou, Fangbin
Zhang, Dongmei
author_facet Zhou, Fangbin
Zhang, Dongmei
author_sort Zhou, Fangbin
collection PubMed
description Bacillus Calmette–Guerin (BCG), the only current vaccine against tuberculosis (TB) that is licensed in clinics, successfully protects infants and young children against several TB types, such as TB meningitis and miliary TB, but it is ineffective in protecting adolescents and adults against pulmonary TB. Thus, it is a matter of the utmost urgency to develop an improved and efficient TB vaccine. In this milieu, virus-like particles (VLPs) exhibit excellent characteristics in the field of vaccine development due to their numerous characteristics, including but not limited to their good safety without the risk of infection, their ability to mimic the size and structure of original viruses, and their ability to display foreign antigens on their surface to enhance the immune response. In this study, the HPV16 L1 capsid protein (HPV16L1) acted as a structural vaccine scaffold, and the extracellular domain of Ag85B was selected as the M. tb immunogen and inserted into the FG loop of the HPV16 L1 protein to construct chimeric HPV16L1/Ag85B VLPs. The chimeric HPV16L1/Ag85B VLPs were produced via the Pichia pastoris expression system and purified via discontinuous Optiprep density gradient centrifugation. The humoral and T cell-mediated immune response induced by the chimeric HPV16L1/Ag85B VLP was studied in female C57BL/c mice. We demonstrated that the insertion of the extracellular domain of Ag85B into the FG loop of HPV16L1 did not affect the in vitro stability and self-assembly of the chimeric HPV16L1/Ag85B VLPs. Importantly, it did not interfere with the immunogenicity of Ag85B. We observed that the chimeric HPV16L1/Ag85B VLPs induced higher Ag85B-specific antibody responses and elicited significant Ag85B-specific T cell immune responses in female C57BL/c mice compared with recombinant Ag85B. Our findings provide new insights into the development of novel chimeric HPV16L1/TB VLP-based vaccine platforms for controlling TB infection, which are urgently required in low-income and developing countries.
format Online
Article
Text
id pubmed-10612075
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106120752023-10-29 Nano-Sized Chimeric Human Papillomavirus-16 L1 Virus-like Particles Displaying Mycobacterium tuberculosis Antigen Ag85B Enhance Ag85B-Specific Immune Responses in Female C57BL/c Mice Zhou, Fangbin Zhang, Dongmei Viruses Article Bacillus Calmette–Guerin (BCG), the only current vaccine against tuberculosis (TB) that is licensed in clinics, successfully protects infants and young children against several TB types, such as TB meningitis and miliary TB, but it is ineffective in protecting adolescents and adults against pulmonary TB. Thus, it is a matter of the utmost urgency to develop an improved and efficient TB vaccine. In this milieu, virus-like particles (VLPs) exhibit excellent characteristics in the field of vaccine development due to their numerous characteristics, including but not limited to their good safety without the risk of infection, their ability to mimic the size and structure of original viruses, and their ability to display foreign antigens on their surface to enhance the immune response. In this study, the HPV16 L1 capsid protein (HPV16L1) acted as a structural vaccine scaffold, and the extracellular domain of Ag85B was selected as the M. tb immunogen and inserted into the FG loop of the HPV16 L1 protein to construct chimeric HPV16L1/Ag85B VLPs. The chimeric HPV16L1/Ag85B VLPs were produced via the Pichia pastoris expression system and purified via discontinuous Optiprep density gradient centrifugation. The humoral and T cell-mediated immune response induced by the chimeric HPV16L1/Ag85B VLP was studied in female C57BL/c mice. We demonstrated that the insertion of the extracellular domain of Ag85B into the FG loop of HPV16L1 did not affect the in vitro stability and self-assembly of the chimeric HPV16L1/Ag85B VLPs. Importantly, it did not interfere with the immunogenicity of Ag85B. We observed that the chimeric HPV16L1/Ag85B VLPs induced higher Ag85B-specific antibody responses and elicited significant Ag85B-specific T cell immune responses in female C57BL/c mice compared with recombinant Ag85B. Our findings provide new insights into the development of novel chimeric HPV16L1/TB VLP-based vaccine platforms for controlling TB infection, which are urgently required in low-income and developing countries. MDPI 2023-10-19 /pmc/articles/PMC10612075/ /pubmed/37896900 http://dx.doi.org/10.3390/v15102123 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhou, Fangbin
Zhang, Dongmei
Nano-Sized Chimeric Human Papillomavirus-16 L1 Virus-like Particles Displaying Mycobacterium tuberculosis Antigen Ag85B Enhance Ag85B-Specific Immune Responses in Female C57BL/c Mice
title Nano-Sized Chimeric Human Papillomavirus-16 L1 Virus-like Particles Displaying Mycobacterium tuberculosis Antigen Ag85B Enhance Ag85B-Specific Immune Responses in Female C57BL/c Mice
title_full Nano-Sized Chimeric Human Papillomavirus-16 L1 Virus-like Particles Displaying Mycobacterium tuberculosis Antigen Ag85B Enhance Ag85B-Specific Immune Responses in Female C57BL/c Mice
title_fullStr Nano-Sized Chimeric Human Papillomavirus-16 L1 Virus-like Particles Displaying Mycobacterium tuberculosis Antigen Ag85B Enhance Ag85B-Specific Immune Responses in Female C57BL/c Mice
title_full_unstemmed Nano-Sized Chimeric Human Papillomavirus-16 L1 Virus-like Particles Displaying Mycobacterium tuberculosis Antigen Ag85B Enhance Ag85B-Specific Immune Responses in Female C57BL/c Mice
title_short Nano-Sized Chimeric Human Papillomavirus-16 L1 Virus-like Particles Displaying Mycobacterium tuberculosis Antigen Ag85B Enhance Ag85B-Specific Immune Responses in Female C57BL/c Mice
title_sort nano-sized chimeric human papillomavirus-16 l1 virus-like particles displaying mycobacterium tuberculosis antigen ag85b enhance ag85b-specific immune responses in female c57bl/c mice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10612075/
https://www.ncbi.nlm.nih.gov/pubmed/37896900
http://dx.doi.org/10.3390/v15102123
work_keys_str_mv AT zhoufangbin nanosizedchimerichumanpapillomavirus16l1viruslikeparticlesdisplayingmycobacteriumtuberculosisantigenag85benhanceag85bspecificimmuneresponsesinfemalec57blcmice
AT zhangdongmei nanosizedchimerichumanpapillomavirus16l1viruslikeparticlesdisplayingmycobacteriumtuberculosisantigenag85benhanceag85bspecificimmuneresponsesinfemalec57blcmice