Cargando…
A transformer-based multi-task deep learning model for simultaneous infiltrated brain area identification and segmentation of gliomas
BACKGROUND: The anatomical infiltrated brain area and the boundaries of gliomas have a significant impact on clinical decision making and available treatment options. Identifying glioma-infiltrated brain areas and delineating the tumor manually is a laborious and time-intensive process. Previous dee...
Autores principales: | Li, Yin, Zheng, Kaiyi, Li, Shuang, Yi, Yongju, Li, Min, Ren, Yufan, Guo, Congyue, Zhong, Liming, Yang, Wei, Li, Xinming, Yao, Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10612240/ https://www.ncbi.nlm.nih.gov/pubmed/37891702 http://dx.doi.org/10.1186/s40644-023-00615-1 |
Ejemplares similares
-
Multi-Task Deep Learning Approach for Simultaneous Objective Response Prediction and Tumor Segmentation in HCC Patients with Transarterial Chemoembolization
por: Li, Yuze, et al.
Publicado: (2022) -
Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning
por: van der Voort, Sebastian R, et al.
Publicado: (2022) -
Identification of 3 subpopulations of tumor-infiltrating immune cells for malignant transformation of low-grade glioma
por: Lu, Jiacheng, et al.
Publicado: (2019) -
O-Net: A Novel Framework With Deep Fusion of CNN and Transformer for Simultaneous Segmentation and Classification
por: Wang, Tao, et al.
Publicado: (2022) -
Predicting treatment response from longitudinal images using multi-task deep learning
por: Jin, Cheng, et al.
Publicado: (2021)