Cargando…
stVAE deconvolves cell-type composition in large-scale cellular resolution spatial transcriptomics
MOTIVATION: Recent rapid developments in spatial transcriptomic techniques at cellular resolution have gained increasing attention. However, the unique characteristics of large-scale cellular resolution spatial transcriptomic datasets, such as the limited number of transcripts captured per spot and...
Autores principales: | Li, Chen, Chan, Ting-Fung, Yang, Can, Lin, Zhixiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10612402/ https://www.ncbi.nlm.nih.gov/pubmed/37862237 http://dx.doi.org/10.1093/bioinformatics/btad642 |
Ejemplares similares
-
Interpretable and context-free deconvolution of multi-scale whole transcriptomic data with UniCell deconvolve
por: Charytonowicz, Daniel, et al.
Publicado: (2023) -
Digitally deconvolving the tumor microenvironment
por: Aran, Dvir, et al.
Publicado: (2016) -
Conditional VAE in medical field
por: Zoccheddu, Sara
Publicado: (2023) -
DA-LSTM-VAE: Dual-Stage Attention-Based LSTM-VAE for KPI Anomaly Detection
por: Zhao, Yun, et al.
Publicado: (2022) -
siVAE: interpretable deep generative models for single-cell transcriptomes
por: Choi, Yongin, et al.
Publicado: (2023)