Cargando…
Robust discovery of gene regulatory networks from single-cell gene expression data by Causal Inference Using Composition of Transactions
Gene regulatory networks (GRNs) drive organism structure and functions, so the discovery and characterization of GRNs is a major goal in biological research. However, accurate identification of causal regulatory connections and inference of GRNs using gene expression datasets, more recently from sin...
Autores principales: | Shojaee, Abbas, Huang, Shao-shan Carol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10612495/ https://www.ncbi.nlm.nih.gov/pubmed/37897702 http://dx.doi.org/10.1093/bib/bbad370 |
Ejemplares similares
-
Multi-omics regulatory network inference in the presence of missing data
por: Henao, Juan D, et al.
Publicado: (2023) -
FitDevo: accurate inference of single-cell developmental potential using sample-specific gene weight
por: Zhang, Feng, et al.
Publicado: (2022) -
CORN—Condition Orientated Regulatory Networks: bridging conditions to gene networks
por: Leung, Ricky Wai Tak, et al.
Publicado: (2022) -
Filter and Wrapper Stacking Ensemble (FWSE): a robust approach for reliable biomarker discovery in high-dimensional omics data
por: Budhraja, Sugam, et al.
Publicado: (2023) -
Predicting gene regulatory links from single-cell RNA-seq data using graph neural networks
por: Mao, Guo, et al.
Publicado: (2023)