Cargando…

Clinical application of metagenomic next-generation sequencing in non-immunocompromised patients with severe pneumonia supported by veno-venous extracorporeal membrane oxygenation

OBJECTIVES: This study aims to explore the pathogen-detected effect of mNGS technology and its clinical application in non-immunocompromised patients with severe pneumonia supported by vv-ECMO. METHODS: A retrospective analysis was conducted on a cohort of 50 non-immunocompromised patients who recei...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xing-Xing, Niu, Cheng-Zhi, Zhao, Yang-Chao, Fu, Guo-Wei, Zhao, Hui, Huang, Ming-Jun, Li, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10613042/
https://www.ncbi.nlm.nih.gov/pubmed/37900317
http://dx.doi.org/10.3389/fcimb.2023.1269853
_version_ 1785128739318792192
author Li, Xing-Xing
Niu, Cheng-Zhi
Zhao, Yang-Chao
Fu, Guo-Wei
Zhao, Hui
Huang, Ming-Jun
Li, Jun
author_facet Li, Xing-Xing
Niu, Cheng-Zhi
Zhao, Yang-Chao
Fu, Guo-Wei
Zhao, Hui
Huang, Ming-Jun
Li, Jun
author_sort Li, Xing-Xing
collection PubMed
description OBJECTIVES: This study aims to explore the pathogen-detected effect of mNGS technology and its clinical application in non-immunocompromised patients with severe pneumonia supported by vv-ECMO. METHODS: A retrospective analysis was conducted on a cohort of 50 non-immunocompromised patients who received vv-ECMO support for severe pneumonia between January 2016 and December 2022. These patients were divided into two groups based on their discharge outcomes: the deterioration group (Group D), which included 31 cases, and the improvement group (Group I), consisting of 19 cases. Baseline characteristics and clinical data were collected and analyzed. RESULTS: Among the 50 patients enrolled, Group D exhibited a higher prevalence of male patients (80.6% vs. 52.6%, p < 0.05), more smokers (54.8% vs. 21.1%, p < 0.05), and were older than those in Group I (55.16 ± 16.34 years vs. 42.32 ± 19.65 years, p < 0.05). Out of the 64 samples subjected to mNGS detection, 55 (85.9%) yielded positive results, with a positivity rate of 83.7% (36/43) in Group D and 90.5% (19/21) in Group I. By contrast, the positive rate through traditional culture stood at 64.9% (74/114). Among the 54 samples that underwent both culture and mNGS testing, 23 (42.6%) displayed consistent pathogen identification, 13 (24.1%) exhibited partial consistency, and 18 (33.3%) showed complete inconsistency. Among the last cases with complete inconsistency, 14 (77.8%) were culture-negative, while two (11.1%) were mNGS-negative, and the remaining two (11.1%) presented mismatches. Remarkably, mNGS surpassed traditional culture in pathogen identification (65 strains vs. 23 strains). Within these 65 strains, 56 were found in Group D, 26 in Group I, and 17 were overlapping strains. Interestingly, a diverse array of G+ bacteria, fungi, viruses, and special pathogens were exclusive to Group D. Furthermore, Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae were more prevalent in Group D compared to Group I. Importantly, mNGS prompted antibiotic treatment adjustments in 26 patients (52.0%). CONCLUSIONS: Compared with the conventional culture, mNGS demonstrated a higher positive rate, and emerges as a promising method for identifying mixed pathogens in non-immunodeficient patients with severe pneumonia supported by vv-ECMO. However, it is crucial to combine the interpretation of mNGS data with clinical information and traditional culture results for a comprehensive assessment.
format Online
Article
Text
id pubmed-10613042
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-106130422023-10-29 Clinical application of metagenomic next-generation sequencing in non-immunocompromised patients with severe pneumonia supported by veno-venous extracorporeal membrane oxygenation Li, Xing-Xing Niu, Cheng-Zhi Zhao, Yang-Chao Fu, Guo-Wei Zhao, Hui Huang, Ming-Jun Li, Jun Front Cell Infect Microbiol Cellular and Infection Microbiology OBJECTIVES: This study aims to explore the pathogen-detected effect of mNGS technology and its clinical application in non-immunocompromised patients with severe pneumonia supported by vv-ECMO. METHODS: A retrospective analysis was conducted on a cohort of 50 non-immunocompromised patients who received vv-ECMO support for severe pneumonia between January 2016 and December 2022. These patients were divided into two groups based on their discharge outcomes: the deterioration group (Group D), which included 31 cases, and the improvement group (Group I), consisting of 19 cases. Baseline characteristics and clinical data were collected and analyzed. RESULTS: Among the 50 patients enrolled, Group D exhibited a higher prevalence of male patients (80.6% vs. 52.6%, p < 0.05), more smokers (54.8% vs. 21.1%, p < 0.05), and were older than those in Group I (55.16 ± 16.34 years vs. 42.32 ± 19.65 years, p < 0.05). Out of the 64 samples subjected to mNGS detection, 55 (85.9%) yielded positive results, with a positivity rate of 83.7% (36/43) in Group D and 90.5% (19/21) in Group I. By contrast, the positive rate through traditional culture stood at 64.9% (74/114). Among the 54 samples that underwent both culture and mNGS testing, 23 (42.6%) displayed consistent pathogen identification, 13 (24.1%) exhibited partial consistency, and 18 (33.3%) showed complete inconsistency. Among the last cases with complete inconsistency, 14 (77.8%) were culture-negative, while two (11.1%) were mNGS-negative, and the remaining two (11.1%) presented mismatches. Remarkably, mNGS surpassed traditional culture in pathogen identification (65 strains vs. 23 strains). Within these 65 strains, 56 were found in Group D, 26 in Group I, and 17 were overlapping strains. Interestingly, a diverse array of G+ bacteria, fungi, viruses, and special pathogens were exclusive to Group D. Furthermore, Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae were more prevalent in Group D compared to Group I. Importantly, mNGS prompted antibiotic treatment adjustments in 26 patients (52.0%). CONCLUSIONS: Compared with the conventional culture, mNGS demonstrated a higher positive rate, and emerges as a promising method for identifying mixed pathogens in non-immunodeficient patients with severe pneumonia supported by vv-ECMO. However, it is crucial to combine the interpretation of mNGS data with clinical information and traditional culture results for a comprehensive assessment. Frontiers Media S.A. 2023-10-13 /pmc/articles/PMC10613042/ /pubmed/37900317 http://dx.doi.org/10.3389/fcimb.2023.1269853 Text en Copyright © 2023 Li, Niu, Zhao, Fu, Zhao, Huang and Li https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Cellular and Infection Microbiology
Li, Xing-Xing
Niu, Cheng-Zhi
Zhao, Yang-Chao
Fu, Guo-Wei
Zhao, Hui
Huang, Ming-Jun
Li, Jun
Clinical application of metagenomic next-generation sequencing in non-immunocompromised patients with severe pneumonia supported by veno-venous extracorporeal membrane oxygenation
title Clinical application of metagenomic next-generation sequencing in non-immunocompromised patients with severe pneumonia supported by veno-venous extracorporeal membrane oxygenation
title_full Clinical application of metagenomic next-generation sequencing in non-immunocompromised patients with severe pneumonia supported by veno-venous extracorporeal membrane oxygenation
title_fullStr Clinical application of metagenomic next-generation sequencing in non-immunocompromised patients with severe pneumonia supported by veno-venous extracorporeal membrane oxygenation
title_full_unstemmed Clinical application of metagenomic next-generation sequencing in non-immunocompromised patients with severe pneumonia supported by veno-venous extracorporeal membrane oxygenation
title_short Clinical application of metagenomic next-generation sequencing in non-immunocompromised patients with severe pneumonia supported by veno-venous extracorporeal membrane oxygenation
title_sort clinical application of metagenomic next-generation sequencing in non-immunocompromised patients with severe pneumonia supported by veno-venous extracorporeal membrane oxygenation
topic Cellular and Infection Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10613042/
https://www.ncbi.nlm.nih.gov/pubmed/37900317
http://dx.doi.org/10.3389/fcimb.2023.1269853
work_keys_str_mv AT lixingxing clinicalapplicationofmetagenomicnextgenerationsequencinginnonimmunocompromisedpatientswithseverepneumoniasupportedbyvenovenousextracorporealmembraneoxygenation
AT niuchengzhi clinicalapplicationofmetagenomicnextgenerationsequencinginnonimmunocompromisedpatientswithseverepneumoniasupportedbyvenovenousextracorporealmembraneoxygenation
AT zhaoyangchao clinicalapplicationofmetagenomicnextgenerationsequencinginnonimmunocompromisedpatientswithseverepneumoniasupportedbyvenovenousextracorporealmembraneoxygenation
AT fuguowei clinicalapplicationofmetagenomicnextgenerationsequencinginnonimmunocompromisedpatientswithseverepneumoniasupportedbyvenovenousextracorporealmembraneoxygenation
AT zhaohui clinicalapplicationofmetagenomicnextgenerationsequencinginnonimmunocompromisedpatientswithseverepneumoniasupportedbyvenovenousextracorporealmembraneoxygenation
AT huangmingjun clinicalapplicationofmetagenomicnextgenerationsequencinginnonimmunocompromisedpatientswithseverepneumoniasupportedbyvenovenousextracorporealmembraneoxygenation
AT lijun clinicalapplicationofmetagenomicnextgenerationsequencinginnonimmunocompromisedpatientswithseverepneumoniasupportedbyvenovenousextracorporealmembraneoxygenation