Cargando…
Non-thermal structural transformation of diamond driven by x-rays
Intense x-ray pulses can cause the non-thermal structural transformation of diamond. At the SACLA XFEL facility, pump x-ray pulses triggered this phase transition, and probe x-ray pulses produced diffraction patterns. Time delays were observed from 0 to 250 fs, and the x-ray dose varied from 0.9 to...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Crystallographic Association
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10613085/ https://www.ncbi.nlm.nih.gov/pubmed/37901681 http://dx.doi.org/10.1063/4.0000193 |
_version_ | 1785128750185185280 |
---|---|
author | Heimann, Philip Hartley, Nicholas J. Inoue, Ichiro Tkachenko, Victor Antoine, Andre Dorchies, Fabien Falcone, Roger Gaudin, Jérôme Höppner, Hauke Inubushi, Yuichi Kapcia, Konrad J. Lee, Hae Ja Lipp, Vladimir Martinez, Paloma Medvedev, Nikita Tavella, Franz Toleikis, Sven Yabashi, Makina Yabuuchi, Toshinori Yamada, Jumpei Ziaja, Beata |
author_facet | Heimann, Philip Hartley, Nicholas J. Inoue, Ichiro Tkachenko, Victor Antoine, Andre Dorchies, Fabien Falcone, Roger Gaudin, Jérôme Höppner, Hauke Inubushi, Yuichi Kapcia, Konrad J. Lee, Hae Ja Lipp, Vladimir Martinez, Paloma Medvedev, Nikita Tavella, Franz Toleikis, Sven Yabashi, Makina Yabuuchi, Toshinori Yamada, Jumpei Ziaja, Beata |
author_sort | Heimann, Philip |
collection | PubMed |
description | Intense x-ray pulses can cause the non-thermal structural transformation of diamond. At the SACLA XFEL facility, pump x-ray pulses triggered this phase transition, and probe x-ray pulses produced diffraction patterns. Time delays were observed from 0 to 250 fs, and the x-ray dose varied from 0.9 to 8.0 eV/atom. The intensity of the (111), (220), and (311) diffraction peaks decreased with time, indicating a disordering of the crystal lattice. From a Debye–Waller analysis, the rms atomic displacements perpendicular to the (111) planes were observed to be significantly larger than those perpendicular to the (220) or (311) planes. At a long time delay of 33 ms, graphite (002) diffraction indicates that graphitization did occur above a threshold dose of 1.2 eV/atom. These experimental results are in qualitative agreement with XTANT+ simulations using a hybrid model based on density-functional tight-binding molecular dynamics. |
format | Online Article Text |
id | pubmed-10613085 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Crystallographic Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-106130852023-10-29 Non-thermal structural transformation of diamond driven by x-rays Heimann, Philip Hartley, Nicholas J. Inoue, Ichiro Tkachenko, Victor Antoine, Andre Dorchies, Fabien Falcone, Roger Gaudin, Jérôme Höppner, Hauke Inubushi, Yuichi Kapcia, Konrad J. Lee, Hae Ja Lipp, Vladimir Martinez, Paloma Medvedev, Nikita Tavella, Franz Toleikis, Sven Yabashi, Makina Yabuuchi, Toshinori Yamada, Jumpei Ziaja, Beata Struct Dyn Articles Intense x-ray pulses can cause the non-thermal structural transformation of diamond. At the SACLA XFEL facility, pump x-ray pulses triggered this phase transition, and probe x-ray pulses produced diffraction patterns. Time delays were observed from 0 to 250 fs, and the x-ray dose varied from 0.9 to 8.0 eV/atom. The intensity of the (111), (220), and (311) diffraction peaks decreased with time, indicating a disordering of the crystal lattice. From a Debye–Waller analysis, the rms atomic displacements perpendicular to the (111) planes were observed to be significantly larger than those perpendicular to the (220) or (311) planes. At a long time delay of 33 ms, graphite (002) diffraction indicates that graphitization did occur above a threshold dose of 1.2 eV/atom. These experimental results are in qualitative agreement with XTANT+ simulations using a hybrid model based on density-functional tight-binding molecular dynamics. American Crystallographic Association 2023-10-27 /pmc/articles/PMC10613085/ /pubmed/37901681 http://dx.doi.org/10.1063/4.0000193 Text en © 2023 Author(s). https://creativecommons.org/licenses/by/4.0/All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Articles Heimann, Philip Hartley, Nicholas J. Inoue, Ichiro Tkachenko, Victor Antoine, Andre Dorchies, Fabien Falcone, Roger Gaudin, Jérôme Höppner, Hauke Inubushi, Yuichi Kapcia, Konrad J. Lee, Hae Ja Lipp, Vladimir Martinez, Paloma Medvedev, Nikita Tavella, Franz Toleikis, Sven Yabashi, Makina Yabuuchi, Toshinori Yamada, Jumpei Ziaja, Beata Non-thermal structural transformation of diamond driven by x-rays |
title | Non-thermal structural transformation of diamond driven by x-rays |
title_full | Non-thermal structural transformation of diamond driven by x-rays |
title_fullStr | Non-thermal structural transformation of diamond driven by x-rays |
title_full_unstemmed | Non-thermal structural transformation of diamond driven by x-rays |
title_short | Non-thermal structural transformation of diamond driven by x-rays |
title_sort | non-thermal structural transformation of diamond driven by x-rays |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10613085/ https://www.ncbi.nlm.nih.gov/pubmed/37901681 http://dx.doi.org/10.1063/4.0000193 |
work_keys_str_mv | AT heimannphilip nonthermalstructuraltransformationofdiamonddrivenbyxrays AT hartleynicholasj nonthermalstructuraltransformationofdiamonddrivenbyxrays AT inoueichiro nonthermalstructuraltransformationofdiamonddrivenbyxrays AT tkachenkovictor nonthermalstructuraltransformationofdiamonddrivenbyxrays AT antoineandre nonthermalstructuraltransformationofdiamonddrivenbyxrays AT dorchiesfabien nonthermalstructuraltransformationofdiamonddrivenbyxrays AT falconeroger nonthermalstructuraltransformationofdiamonddrivenbyxrays AT gaudinjerome nonthermalstructuraltransformationofdiamonddrivenbyxrays AT hoppnerhauke nonthermalstructuraltransformationofdiamonddrivenbyxrays AT inubushiyuichi nonthermalstructuraltransformationofdiamonddrivenbyxrays AT kapciakonradj nonthermalstructuraltransformationofdiamonddrivenbyxrays AT leehaeja nonthermalstructuraltransformationofdiamonddrivenbyxrays AT lippvladimir nonthermalstructuraltransformationofdiamonddrivenbyxrays AT martinezpaloma nonthermalstructuraltransformationofdiamonddrivenbyxrays AT medvedevnikita nonthermalstructuraltransformationofdiamonddrivenbyxrays AT tavellafranz nonthermalstructuraltransformationofdiamonddrivenbyxrays AT toleikissven nonthermalstructuraltransformationofdiamonddrivenbyxrays AT yabashimakina nonthermalstructuraltransformationofdiamonddrivenbyxrays AT yabuuchitoshinori nonthermalstructuraltransformationofdiamonddrivenbyxrays AT yamadajumpei nonthermalstructuraltransformationofdiamonddrivenbyxrays AT ziajabeata nonthermalstructuraltransformationofdiamonddrivenbyxrays |