Cargando…

Shoseiryuto Promotes the Formation of a Tight-Junction Barrier in Cultured Human Bronchial Epithelial Cells

Shoseiryuto (SST) (Xiao-Qing-Long-Tang in Chinese) is an effective treatment for respiratory diseases, such as bronchial asthma and allergic rhinitis, but its effects on the bronchial tight-junction (TJ) barrier have not been clarified. This study aimed to evaluate the effect of SST on TJ-barrier fu...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Jingya, Hu, Ailing, Yamaguchi, Takuji, Tabuchi, Masahiro, Ikarashi, Yasushi, Kobayashi, Hiroyuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10613115/
https://www.ncbi.nlm.nih.gov/pubmed/37899908
http://dx.doi.org/10.1155/2023/4694243
Descripción
Sumario:Shoseiryuto (SST) (Xiao-Qing-Long-Tang in Chinese) is an effective treatment for respiratory diseases, such as bronchial asthma and allergic rhinitis, but its effects on the bronchial tight-junction (TJ) barrier have not been clarified. This study aimed to evaluate the effect of SST on TJ-barrier function in human bronchial epithelial (16HBE) cells. The 16HBE cells were cultured in a culture medium without (control) and with SST in the absence and presence of bacterial endotoxin lipopolysaccharide (LPS) in transwell chambers. Transepithelial electrical resistance (TEER) and sodium fluorescein (Na-F) permeability of the cultured-cell monolayer were measured as TJ integrity markers. In addition, immunofluorescence staining and quantitative real-time polymerase chain reaction analysis were used to measure the expression of the TJ protein, occludin. SST increased TEER and decreased Na-F permeability of the 16HBE cell monolayers. Furthermore, SST increased both occludin mRNA and immunostained protein expressions, suggesting that SST has the effect of directly promoting epithelial TJ-barrier function. LPS decreased TEER, increased Na-F permeability, and decreased both occludin mRNA and protein expression. LPS-induced barrier dysfunction was completely blocked by pre/co- and posttreatment with SST. These results suggest that SST has protective and therapeutic effects against LPS-induced TJ-barrier damage. To our knowledge, these are the first results to demonstrate the protective and therapeutic effects conferred by TJ-barrier promoting, which may be a novel mechanism contributing to the efficacy of SST for respiratory diseases.