Cargando…
Predicting survival of advanced laryngeal squamous cell carcinoma: comparison of machine learning models and Cox regression models
Laryngeal squamous cell carcinoma (LSCC) is a common tumor type. High recurrence rates remain an important factor affecting the survival and quality of life of advanced LSCC patients. We aimed to build a new nomogram and a random survival forest model using machine learning to predict the risk of LS...
Autores principales: | Zhang, Yi-Fan, Shen, Yu-Jie, Huang, Qiang, Wu, Chun-Ping, Zhou, Liang, Ren, Heng-Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10613248/ https://www.ncbi.nlm.nih.gov/pubmed/37898687 http://dx.doi.org/10.1038/s41598-023-45831-8 |
Ejemplares similares
-
Which model is better in predicting the survival of laryngeal squamous cell carcinoma?: Comparison of the random survival forest based on machine learning algorithms to Cox regression: analyses based on SEER database
por: Sun, Haili, et al.
Publicado: (2023) -
Comparison of the cox regression to machine learning in predicting the survival of anaplastic thyroid carcinoma
por: Xu, Lizhen, et al.
Publicado: (2023) -
Comparison of Cox proportional hazards regression and generalized Cox regression models applied in dementia risk prediction
por: Goerdten, Jantje, et al.
Publicado: (2020) -
Correction: Comparison of the cox regression to machine learning in predicting the survival of anaplastic thyroid carcinoma
por: Xu, Lizhen, et al.
Publicado: (2023) -
Misspecification of Cox regression models with composite endpoints
por: Wu, Longyang, et al.
Publicado: (2012)