Cargando…
Predicting mortality in brain stroke patients using neural networks: outcomes analysis in a longitudinal study
In this study, Neural Networks (NN) modelling has emerged as a promising tool for predicting outcomes in patients with Brain Stroke (BS) by identifying key risk factors. In this longitudinal study, we enrolled 332 patients form Imam hospital in Ardabil, Iran, with mean age: 77.4 (SD 10.4) years, and...
Autores principales: | Someeh, Nasrin, Mirfeizi, Mani, Asghari-Jafarabadi, Mohammad, Alinia, Shayesteh, Farzipoor, Farshid, Shamshirgaran, Seyed Morteza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10613278/ https://www.ncbi.nlm.nih.gov/pubmed/37898678 http://dx.doi.org/10.1038/s41598-023-45877-8 |
Ejemplares similares
-
The outcome in patients with brain stroke: A deep learning neural network modeling
por: Someeh, Nasrin, et al.
Publicado: (2020) -
The moderating role of underlying predictors of survival in patients with brain stroke: a statistical modeling
por: Someeh, Nasrin, et al.
Publicado: (2020) -
Modeling Survival in Patients With Brain Stroke in the Presence of Competing Risks
por: Norouzi, Solmaz, et al.
Publicado: (2021) -
Identifying Factors Associated with Functional Limitation Among Diabetic Patients in Northwest of Iran: Application of the Generalized Additive Model
por: Faraji Gavgani, leili, et al.
Publicado: (2018) -
Survival prediction and prognostic factors in colorectal cancer after curative surgery: insights from cox regression and neural networks
por: Alinia, Shayeste, et al.
Publicado: (2023)