Cargando…
Explainable machine learning using perioperative serial laboratory results to predict postoperative mortality in patients with peritonitis-induced sepsis
PURPOSE: Sepsis is one of the most common causes of death after surgery. Several conventional scoring systems have been developed to predict the outcome of sepsis; however, their predictive power is insufficient. The present study applies explainable machine-learning algorithms to improve the accura...
Autores principales: | Lim, Seung Hee, Kim, Min Jeong, Choi, Won Hyuk, Cheong, Jin Cheol, Kim, Jong Wan, Lee, Kyung Joo, Park, Jun Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Surgical Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10613826/ https://www.ncbi.nlm.nih.gov/pubmed/37908377 http://dx.doi.org/10.4174/astr.2023.105.4.237 |
Ejemplares similares
-
The delta neutrophil index is a prognostic factor for postoperative mortality in patients with sepsis caused by peritonitis
por: Kim, Jong Wan, et al.
Publicado: (2017) -
Spontaneous Bacterial Peritonitis with Sepsis Caused by Enterococcus hirae
por: Sim, Jong Seop, et al.
Publicado: (2012) -
Postoperative Nausea and Vomiting Prediction: Machine Learning Insights from a Comprehensive Analysis of Perioperative Data
por: Kim, Jong-Ho, et al.
Publicado: (2023) -
Risk factors of postoperative septic cardiomyopathy in perioperative sepsis patients
por: Xin, Yuchang, et al.
Publicado: (2022) -
Serial Changes in Mannose-Binding Lectin in Patients with Sepsis
por: Huh, Jin Won, et al.
Publicado: (2018)