Cargando…

Effect of glucose on growth and co-culture of Staphylococcus aureus and Pseudomonas aeruginosa in artificial sputum medium

People with cystic fibrosis-related diabetes (CFRD) suffer from chronic infections with Staphylococcus aureus and/or Pseudomonas aeruginosa. In people with CFRD, the concentration of glucose in the airway surface liquid (ASL) was shown to be elevated from 0.4 to 4 mM. The effect of glucose on bacter...

Descripción completa

Detalles Bibliográficos
Autores principales: Vasiljevs, Stanislavs, Gupta, Arya, Baines, Deborah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10613906/
https://www.ncbi.nlm.nih.gov/pubmed/37908712
http://dx.doi.org/10.1016/j.heliyon.2023.e21469
_version_ 1785128928734609408
author Vasiljevs, Stanislavs
Gupta, Arya
Baines, Deborah
author_facet Vasiljevs, Stanislavs
Gupta, Arya
Baines, Deborah
author_sort Vasiljevs, Stanislavs
collection PubMed
description People with cystic fibrosis-related diabetes (CFRD) suffer from chronic infections with Staphylococcus aureus and/or Pseudomonas aeruginosa. In people with CFRD, the concentration of glucose in the airway surface liquid (ASL) was shown to be elevated from 0.4 to 4 mM. The effect of glucose on bacterial growth/interactions in ASL is not well understood and here we studied the relationship between these lung pathogens in artificial sputum medium (ASM), an environment similar to ASL in vivo. S. aureus exhibited more rapid adaptation to growth in ASM than P. aeruginosa. Supplementation of ASM with glucose significantly increased the growth of S. aureus (p < 0.01, n = 5) and P. aeruginosa (p < 0.001, n = 3). ASM conditioned by the presence of S. aureus promoted growth of P. aeruginosa with less lag time compared with non-conditioned ASM, or conditioned medium that had been heated to 121 °C. Stable co-culture of S. aureus and P. aeruginosa could be established in a 50:50 mix of ASM and S. aureus-conditioned supernatant. These data indicate that glucose, in a nutrient depleted environment, can promote the growth of S. aureus and P. aeruginosa. In addition, heat labile factors present in S. aureus pre-conditioned ASM promoted the growth of P. aeruginosa. We suggest that the use of ASM allows investigation of the effects of nutrients such as glucose on common lung pathogens. ASM could be further used to understand the relationship between S. aureus and P. aeruginosa in a co-culture scenario. Our model of stable co-culture could be extrapolated to include other common lung pathogens and could be used to better understand disease progression in vitro.
format Online
Article
Text
id pubmed-10613906
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-106139062023-10-31 Effect of glucose on growth and co-culture of Staphylococcus aureus and Pseudomonas aeruginosa in artificial sputum medium Vasiljevs, Stanislavs Gupta, Arya Baines, Deborah Heliyon Research Article People with cystic fibrosis-related diabetes (CFRD) suffer from chronic infections with Staphylococcus aureus and/or Pseudomonas aeruginosa. In people with CFRD, the concentration of glucose in the airway surface liquid (ASL) was shown to be elevated from 0.4 to 4 mM. The effect of glucose on bacterial growth/interactions in ASL is not well understood and here we studied the relationship between these lung pathogens in artificial sputum medium (ASM), an environment similar to ASL in vivo. S. aureus exhibited more rapid adaptation to growth in ASM than P. aeruginosa. Supplementation of ASM with glucose significantly increased the growth of S. aureus (p < 0.01, n = 5) and P. aeruginosa (p < 0.001, n = 3). ASM conditioned by the presence of S. aureus promoted growth of P. aeruginosa with less lag time compared with non-conditioned ASM, or conditioned medium that had been heated to 121 °C. Stable co-culture of S. aureus and P. aeruginosa could be established in a 50:50 mix of ASM and S. aureus-conditioned supernatant. These data indicate that glucose, in a nutrient depleted environment, can promote the growth of S. aureus and P. aeruginosa. In addition, heat labile factors present in S. aureus pre-conditioned ASM promoted the growth of P. aeruginosa. We suggest that the use of ASM allows investigation of the effects of nutrients such as glucose on common lung pathogens. ASM could be further used to understand the relationship between S. aureus and P. aeruginosa in a co-culture scenario. Our model of stable co-culture could be extrapolated to include other common lung pathogens and could be used to better understand disease progression in vitro. Elsevier 2023-10-23 /pmc/articles/PMC10613906/ /pubmed/37908712 http://dx.doi.org/10.1016/j.heliyon.2023.e21469 Text en © 2023 Published by Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Vasiljevs, Stanislavs
Gupta, Arya
Baines, Deborah
Effect of glucose on growth and co-culture of Staphylococcus aureus and Pseudomonas aeruginosa in artificial sputum medium
title Effect of glucose on growth and co-culture of Staphylococcus aureus and Pseudomonas aeruginosa in artificial sputum medium
title_full Effect of glucose on growth and co-culture of Staphylococcus aureus and Pseudomonas aeruginosa in artificial sputum medium
title_fullStr Effect of glucose on growth and co-culture of Staphylococcus aureus and Pseudomonas aeruginosa in artificial sputum medium
title_full_unstemmed Effect of glucose on growth and co-culture of Staphylococcus aureus and Pseudomonas aeruginosa in artificial sputum medium
title_short Effect of glucose on growth and co-culture of Staphylococcus aureus and Pseudomonas aeruginosa in artificial sputum medium
title_sort effect of glucose on growth and co-culture of staphylococcus aureus and pseudomonas aeruginosa in artificial sputum medium
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10613906/
https://www.ncbi.nlm.nih.gov/pubmed/37908712
http://dx.doi.org/10.1016/j.heliyon.2023.e21469
work_keys_str_mv AT vasiljevsstanislavs effectofglucoseongrowthandcocultureofstaphylococcusaureusandpseudomonasaeruginosainartificialsputummedium
AT guptaarya effectofglucoseongrowthandcocultureofstaphylococcusaureusandpseudomonasaeruginosainartificialsputummedium
AT bainesdeborah effectofglucoseongrowthandcocultureofstaphylococcusaureusandpseudomonasaeruginosainartificialsputummedium