Cargando…
Improving grain yield prediction through fusion of multi-temporal spectral features and agronomic trait parameters derived from UAV imagery
Rapid and accurate prediction of crop yield is particularly important for ensuring national and regional food security and guiding the formulation of agricultural and rural development plans. Due to unmanned aerial vehicles’ ultra-high spatial resolution, low cost, and flexibility, they are widely u...
Autores principales: | Zhou, Hongkui, Yang, Jianhua, Lou, Weidong, Sheng, Li, Li, Dong, Hu, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10613988/ https://www.ncbi.nlm.nih.gov/pubmed/37908835 http://dx.doi.org/10.3389/fpls.2023.1217448 |
Ejemplares similares
-
Estimating yield-contributing physiological parameters of cotton using UAV-based imagery
por: Pokhrel, Amrit, et al.
Publicado: (2023) -
Quantitative trait loci for agronomic traits in tetraploid wheat for enhancing grain yield in Kazakhstan environments
por: Anuarbek, Shynar, et al.
Publicado: (2020) -
Multi-Temporal and Spectral Analysis of High-Resolution Hyperspectral Airborne Imagery for Precision Agriculture: Assessment of Wheat Grain Yield and Grain Protein Content
por: Rodrigues, Francelino A., et al.
Publicado: (2018) -
Rice Yield Estimation Using Parcel-Level Relative Spectral Variables From UAV-Based Hyperspectral Imagery
por: Wang, Feilong, et al.
Publicado: (2019) -
Accuracy of genomic selection for grain yield and agronomic traits in soft red winter wheat
por: Lozada, Dennis N., et al.
Publicado: (2019)