Cargando…
Strategic sampling with stochastic surface walking for machine learning force fields in iron's bcc–hcp phase transitions
This study developed a machine learning-based force field for simulating the bcc–hcp phase transitions of iron. By employing traditional molecular dynamics sampling methods and stochastic surface walking sampling methods, combined with Bayesian inference, we construct an efficient machine learning p...
Autores principales: | Wang, Fang, Yang, Zhi, Li, Fenglian, Shao, Jian-Li, Xu, Li-Chun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614040/ https://www.ncbi.nlm.nih.gov/pubmed/37908655 http://dx.doi.org/10.1039/d3ra04676a |
Ejemplares similares
-
Hcp/fcc nucleation in bcc iron under different anisotropic compressions at high strain rate: Molecular dynamics study
por: Shao, Jian-Li, et al.
Publicado: (2018) -
Comparative Study on the Crystallography of Isothermal and Athermal Precipitations in HCP–BCC System
por: Liu, Hongwei
Publicado: (2022) -
Controlled‐Atmosphere Flame Fusion Single‐Crystal Growth of Non‐Noble fcc, hcp, and bcc Metals Using Copper, Cobalt, and Iron
por: Schuett, Fabian M., et al.
Publicado: (2020) -
Crystallization pathways of liquid-bcc transition for a model iron by fast quenching
por: Pan, Shao-Peng, et al.
Publicado: (2015) -
Hydrogen Trapping in bcc Iron
por: Kholtobina, Anastasiia S., et al.
Publicado: (2020)