Cargando…
The application of weighted gene co-expression network analysis and support vector machine learning in the screening of Parkinson’s disease biomarkers and construction of diagnostic models
BACKGROUND: This study aims to utilize Weighted Gene Co-expression Network Analysis (WGCNA) and Support Vector Machine (SVM) algorithm for screening biomarkers and constructing a diagnostic model for Parkinson’s disease. METHODS: Firstly, we conducted WGCNA analysis on gene expression data from Park...
Autores principales: | Cai, Lijun, Tang, Shuang, Liu, Yin, Zhang, Yingwan, Yang, Qin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614158/ https://www.ncbi.nlm.nih.gov/pubmed/37908486 http://dx.doi.org/10.3389/fnmol.2023.1274268 |
Ejemplares similares
-
Identification of Novel Noninvasive Diagnostics Biomarkers in the Parkinson's Diseases and Improving the Disease Classification Using Support Vector Machine
por: Moradi, Shadi, et al.
Publicado: (2022) -
The Construction of Support Vector Machine Classifier Using the Firefly Algorithm
por: Chao, Chih-Feng, et al.
Publicado: (2015) -
Weighted K-means support vector machine for cancer prediction
por: Kim, SungHwan
Publicado: (2016) -
Bayesian Optimization with Support Vector Machine Model for Parkinson Disease Classification
por: Elshewey, Ahmed M., et al.
Publicado: (2023) -
Blood SSR1: A Possible Biomarker for Early Prediction of Parkinson’s Disease
por: Zhang, Wen, et al.
Publicado: (2022)